Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a, 1-4x2
=1-(2x)2
=(1-2x).(1+2x)
b, 8-27x3
=23-(3x)3
=(2-3x).(4+6x+9x2)
Các câu còn lại bạn dùng hằng đẳng thức là phân tích được ra thôi
1 - 4x^2
= 1^2 - ( 2x )^2
= ( 1 - 2x ) ( 1 + 2x )
8 - 27x^ 3
= 2^3 - ( 3x )^3
= ( 2 - 3x ) [ 2^2 + 2 * 3x + ( 3x )^2 ]
= ( 2 - 3x ) ( 4 + 6x + 9x^2 )
= ( 2 - 3x ) ( 9x^2 + 6x + 4 )
27 + 27x + 9x^2 + x^3
= x^3 + 9x^2 + 27x + 27
= x^3 + 3x^2 + 6x^2 + 18x + 9x + 27
= x^2 ( x + 3 ) + 6x ( x + 3 ) + 9 ( x + 3 )
= ( x + 3 ) ( x^2 + 6x + 9 )
= ( x + 3 ) ( x + 3 )^2
= ( x + 3 )^3
x^2 + 4x - 5
= x^2 - x + 5x - 5
= x ( x - 1 ) + 5 ( x - 1 )
= ( x + 1 ) ( x - 5 )
\(\left(x-1\right)^2-25\)
\(=x^2-2x+1-25\)
\(=x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x.\left(x-6\right)+4.\left(x-6\right)\)
\(=\left(x+4\right).\left(x-6\right)\)
a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)
b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
d, \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)
\(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
\(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)^2-4\left(x+y\right)+3\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-4\right)+3\left(x+y-4\right)=\left(x+y+3\right)\left(x+y-4\right)\) \(P=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (nhóm 2 cái đầu với cuối lại với nhau, 2 cái giữa vào 1 nhóm)
Đặt \(x^2+7x+11=a\)
Ta có: \(P=\left(a-1\right)\left(a+1\right)-24\)
\(=a^2-25=\left(a-5\right)\left(a+5\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d, \(4x^4-32x^2+1\)
\(=4x^4+4x^2+1-36x^2\)
\(=\left(2x+1\right)^2-\left(6x\right)^2=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)
\(1-2y+y^2=\left(y-1\right)^2\)
\(\left(x+1\right)^2-25=\left(x-1\right)^2-5^2=\left(x-6\right)\left(x+4\right)\)
\(1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(27+27x+9x^2+x^3=\left(x+3\right)^3\)
\(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
\(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Tham khảo nhé~
Mấy cái này chỉ áp dụng HĐT thoyy nha!
\(a,1-2y+y^2=\left(1-y\right)^2\)
\(b,\left(x-1\right)^2-25=\left(x-1-5\right)\left(x-1+5\right)=\left(x-6\right)\left(x+4\right)\)
\(c,1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
\(d,8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(e,27+27x+9x^2+x^3=\left(x+3\right)^3\)
\(f,8x^3-12x^2y+9xy^2-y^3=\left(2x-y\right)^2\)
\(g,x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+y^2\right)=\left(x+2y\right)\left(x-y\right)^2\)
=.= hok tốt!!
1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)
\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)
2) a)
\(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)
<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0
<=> x=0 hoặc x=-3/2 hoặc x=3/2
b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)
Tại x=203
A=(203-3)3=2003
Bài 1 :
a) \(8x^3-32x\)
\(=8x\left(x^2-4\right)\)
\(=8x\left(x-2\right)\left(x+2\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)
\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)
\(=\left(y+4\right)\left(y^2+y-4x\right)\)
Bài 2 :
a) \(4x^3-9x=0\)
\(x\left(4x^2-9\right)=0\)
\(x\left[\left(2x\right)^2-3^2\right]=0\)
\(x\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)
P.s: ở trên dùng ngoặc vuông nhé
b) \(A=x^3-9x^2+27x-27\)
\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(A=\left(x-3\right)^3\)
Thay x = 203 vào biểu thức ta có :
\(A=\left(203-3\right)^3\)
\(A=200^3\)
\(A=8000000\)