K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Theo bài ra có: f(1)=0 và f(-1)=0

f(1)=a+b+c=0

f(-1)=a-b+c=0

Cộng 2 vế của 2 pt với nhau được:

a+b+c+a-b+c=0

<=> 2a+2c=0

<=> a+c=0

=> a=-c

Vậy a và c là 2 số đối nhau

11 tháng 4 2018

Vì nếu x = 1 và x = -1 là nghiệm của đa thức f(x) 

=> f(1) = 0 và f(-1) = 0

Ta có: 

  f(1) = a + b + c = 0

và f(-1) = a - b + c =0 

=> f(1) + f(-1) = a + b + c + a - b + c = 0

=> 2a + 2c = 0 

=> a + c = 0

=> a và c trái dấu

Vậy:  a và c là 2 số đối nhau

8 tháng 5 2017

Vì x=1, x=-1 là ngiệm của đa thức f(x) nên

a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0                 

=>a+b+c=a-b+c=0                             (1)

=>b=-b

=>b=0

thay b=0 vào (1) ta có a+c=0

=>a và c là 2 số đối nhau

8 tháng 5 2017

k cho mình

25 tháng 4 2017

Bạn vô câu hỏi tương tự xem nhé.

3 tháng 4 2017

Ta có f(1)=a.12+b.1+c=a+b+c=0

f(-1)=a.(-1)2+b.(-1)+c=a-b+c=0

Ta có f(1)-f(-1)=(a+b+c)-(a-b+c)=a+b+c-a+b-c=2b=0

=>b=0

Thay b=0 vào f(1) ta có a+c=0

Vậy a và c là 2 số đối nhau

9 tháng 4 2017

cảm ơn bạn

21 tháng 4 2018

Thay \(x=1\) và đa thức \(f\left(x\right)=ax^2+bx+c\) ta được : 

\(f\left(x\right)=a.1^2+b.1+c\)

\(f\left(x\right)=a+b+c\)

Mà giả thuyết cho \(a+b+c=0\) nên \(f\left(x\right)=a+b+c=0\)

Vậy \(x=1\) là một nghiệm của đa thức \(f\left(x\right)=ax^2+bx+c\)

Chúc bạn học tốt ~ 

21 tháng 4 2018

Cảm ơn nhé!

28 tháng 5 2015

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=0\) 

 

24 tháng 4 2016

Để x=1 là một nghiệm của f(x)

thì f(1)=a.12+b.1+c=0

=>a+b+c=0

 Vậy .........