Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link bài làm của mình đây nhé
https://olm.vn/hoi-dap/detail/831153598726.html
\(\left\{{}\begin{matrix}f\left(0\right)=2017\\f\left(1\right)=2018\\f\left(-1\right)=2019\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=2017\\a+b+c=2018\\a-b+c=2019\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\a-b=2\\c=2017\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\b=-\frac{1}{2}\\c=2017\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)=\frac{3}{2}\cdot2^2-\frac{1}{2}\cdot2+2017\)
\(\Rightarrow f\left(2\right)=6-1+2017=2022\)
Theo đề bài f(0)= 2017 => c= 2017
f(1)= 2018 => a + b + c = 2018 => a + b = 1 (1)
f(-1)= 2019 => a - b + c= 2019 => a - b= 2 (2)
Cộng theo vế của (1) và (2), ta được
2a = 3 => a = 3/2
=>b= -1/2
Vậy a=3/2, b=-1/2, c= 2017. Khi đó f(2)= 6 - 2 + 2017= 2021
Vậy f(2)= 2021
Câu 1:
Vì $G$ là trọng tâm $ABC$ và $AM$ là trung tuyến nên $AG=\frac{2}{3}AM$
$\Rightarrow AG=\frac{2}{3}.6=4$ (cm)
$AM=6$ (cm) - theo giả thiết
Câu 2:
$f(0)=a.0^2+b.0+c=2019$
$\Rightarrow c=2019$
$f(1)=a.1^2+b.1+c=a+b+c=2020$
$\Rightarrow a+b=2020-c=2010-2019=1(1)$
$f(-1)=a(-1)^2+b(-1)+c=a-b+c=2020$
$\Rightarrow a-b=2020-c=2020-2019=1(2)$
Lấy $(1)+(2)\Rightarrow 2a=2\Rightarrow a=1$
$b=a-1=1-1=0$
Vậy đa thức $f(x)=x^2+2019$
$f(2)=2^2+2019=2023$
CON CAC
f(0) = 2020
=> a.02 + b.0 + c = 2020
=> c = 2020
F(1) = 2021
=> a.12 + b1 + c = 2021
=> a + b + 2020 = 2021 (Vì c = 2020)
=> a + b = 1 (1)
F(-1) = 2019
=> a.(-1)2 + b.(-1) + c = 2019
=> a - b + 2020 = 2019
=> a - b = -1 (2)
Từ (1)(2) => a = 0 ; b = 1
=> f(x) = x + 2020
=> f(2022) = 2022 + 2020 = 4042