K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2019

1.Ta có (x-y)^2 >=0

        (x-y)(x-y) >=0

        x^2+y^2-2xy>=0

       (x^2+y^2+2xy)-4xy>=0 

      (x+y)^2 >=4xy mà x+y=1 

         4xy <=1

   xy<=1/4

dấu = xảy ra <=> (x-y)^2=0

                     <=>x-y=0 <=> x=y mà x+y=1 

                         <=> x=y=0,5

GTLn của bt là 1/4 tại x=y=0,5

2. (* chú ý nè : Tổng các hệ số của 1 đa thức sau khi bỏ dấu ngoặc là giá trị của đa thức đó tại biến =0)

Bài này bạn chỉ cần thay x=1 vào rồi tính thui

Đáp số là: 8^2019

3.f(-2)=4a-2b+c

 f(3)=9a+3b+c

=> f(-2)+f(3) =13a+b+2c=0

=> f(-2)=-f(3)

=> f(-2). f(3)= -f(3) .f(3)=-[f(3)]^2

Mà -[f(3)]^2<=0 với mọi a,b,c

=>  f(-2). f(3)<=0 

T i ck cho mình ủng hộ nha

26 tháng 6 2020

Ta có: a + 3c + a + 2b = 2019 + 2020 = 4039 

=> 2 ( a + b + c ) = 4039 - c (1)

a; b ; c là các số hữu tỉ không âm => a; b ; c \(\ge\)

=> 2 ( a + b + c ) = 4039 - c \(\le\)4039 

=> a + b + c \(\le\frac{4039}{2}=2019\frac{1}{2}\)

mà f(1) = a + b + c 

=> f (1) \(\le2019\frac{1}{2}\)

Dấu "=" xảy ra <=> c = 0 ; a = 2019 ; b = 1/2

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nhớ k đúng cho mik

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)