Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét x=o nên f(x) = c nên c chia hết cho 3
xét x=1 suy ra f(x) = a+b+c vì c chia hết cho 3 nên a+b chi hết cho 3 (1)
xét x =-1 suy ra f(x)=a-b+c chia hết cho 3 tương tự suy ra a-b chia hết cho 3 (2)
từ 1 và 2 suy ra a+b+a-b chia hết cho 3 nên 2a chia hết cho 3 mà (2,3)=1 nên a chia hết cho 3 nên b chia hết 3
f(x) chia hết cho 3 với mọi x
=> f(0) chia hết cho 3 => C chia hết cho 3
f(1) ; f(-1) chia hết cho 3
=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3
=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3
f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3
f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3
Vậy.......................
f(x) chia hết cho 3 với mọi x
=> f(0) chia hết cho 3 => C chia hết cho 3
f(1) ; f(-1) chia hết cho 3
=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3
=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3
f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3
f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3
Vậy.......................
Ta có f(0)=c chia hết cho 3.
f(1)=a+b+c chia hết cho 3 mà c chia hết cho 3 nên a+b chia hết cho 3.
f(-1)=a-b+c chia hết cho 3=> a-b chia hết cho 3.
Ta có (a+b)+(a-b)=2a chia hết cho 3. Mà 2,3 nguyên tố cùng nhau nên a chia hết cho 3.
a+b+c chia hết cho 3, a,c chia hết cho 3=> b chia hết cho 3
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\implies\) \(f\left(-x\right)=a.\left(-x\right)^2-bx+c\)
\(\implies\) \(f\left(-x\right)=a.x^2-bx+c\)
\(\implies\)\(f\left(x\right)+f\left(-x\right)=ax^2+bx+c+ax^2-bx+c\)
\(\implies\)\(f\left(x\right)+f\left(-x\right)=2.ax^2+2c\)
\(\implies\)\(f\left(x\right)+f\left(-x\right)=2.\left(ax^2+c\right)\) chia hết cho 2
\(\implies\)\(f\left(x\right)+f\left(-x\right)\) chia hết cho 2 với mọi số nguyên x
+ x=0 => c chia hết cho 3
=> ax2 + bx chia hết cho 3 => x(ax +b) chia hết cho 3 lấy x không chia hết cho 3 => ax +b chia hết cho 3 lấy x chia hết cho 3 => b chia hết cho 3
Vậy b ; c chia hết cho 3 => ax2 chia hết cho 3 lấy x không chia hết cho 3 => a chia hết cho 3
=> dpcm
vì P(x) chia hết cho 3 với mọi x nên ta xét các trường hợp sau:
- ta có: P(0) chia hết cho 3. mà P(0) = c nên ta suy ra c chia hết cho 3
- ta có: P(1) chia hết cho 3. Mà P(1)=a+b+c nên ta suy ra a+b+c chia hết cho 3
lại có c chia hết cho 3 (đã chứng minh)
nên suy ra a+b chia hết cho 3
- ta có ; P(2) chia hết cho 3. mà P(2)= 4a+2b+c=2a+2(a+b)+c
mà c chia hết cho 3, a+b chia hết cho 3 ( đã chứng minh)
nên suy ra 2a chia hết cho 3
mà (2,3)=1 (2 số nguyên tố cùng nhau)
suy ra a chia hết cho 3
mà a+b chia hết cho 3
nên suy ra b chia hết cho 3
vậy a,b,c chia hết cho 3
Có \(P\left(x\right)⋮5\)với mọi x
=> \(P\left(0\right)=d⋮5\)
\(P\left(1\right)=a+b+c+d⋮5\)
\(P\left(-1\right)=-a+b-c+d⋮5\)
\(P\left(2\right)=8a+4b+2c+d⋮5\)
\(P\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\)và \(-a+b-c⋮5\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5\)
Mà 2 là SNT và b nguyên
=> \(b⋮5\)
=> \(a+c⋮5\); \(-a-c⋮5\); \(8a+2c⋮5\); \(-8a-2c⋮5\)
=> \(2\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6a⋮5\)
mà 6 không chia hết cho 5
=> \(a⋮5\)
=> \(b⋮5\)
quá đơn giản với BỐ
bài này thay f(x) bằng f(0), f(1), f(-1) là dk