K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

cho D(x)=0

8 tháng 5 2019

๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉ 甘道夫工程采用激光女可靠

a: P(x)=5x^3+3x^2-2x-5

\(Q\left(x\right)=5x^3+2x^2-2x+4\)

b: P(x)-Q(x)=x^2-9

P(x)+Q(x)=10x^3+5x^2-4x-1

c: P(x)-Q(x)=0

=>x^2-9=0

=>x=3; x=-3

d: C=A*B=-7/2x^6y^4

20 tháng 5 2021

\(2x^2+2x+1=0\)

\(< =>4x^2+4x+2=0\)

\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)

\(< =>\left(2x+1\right)^2+1=0\)

Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)

=> pt voo nghieemj

20 tháng 5 2021

\(x^2-6x+15=0\)

\(< =>x^2-2.x.3+9+6=0\)

\(< =>\left(x-3\right)^2+6=0\)

Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)

=> da thuc vo nghiem

29 tháng 4 2015

1) Ta có: 2x2 + 2x + 1 = 0

<=> x2 + (x2 + 2x + 1) = 0

<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0       (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)

x = x+ 1 => 0 = 1 Vô lý

Vậy đa thức đã cho ko có nghiệm

2) a) x3-2x2-5x+6  = 0

=> x3 - x2 - x2 + x - 6x + 6 = 0

=> ( x3 - x2) - (x2 - x)  - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0

=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0

=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0 

=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0

=> x = 1 hoặc x = -2 hoặc x = 3

Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3

b) x3 + 3x2 - 6x - 8 = 0

=>  x3 +  x2 + 2x2 + 2x - 8x - 8 = 0

=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0

=> (x+ 1). [x2 + 2x - 8] = 0

=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0

=> (x +1). (x -2). (x+4) = 0 

=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0

=> x = -1 hoặc x = 2 hoặc x = -4

Đa thức đã cho có 3 nghiệm là -1; 2; -4

 

6 tháng 12 2016

x+(-2x)=(-70+(-3)

`a,`

`P(x)=5x^3-3x+7-x`

`= 5x^3+(-3x-x)+7`

`= 5x^3-4x+7`

Bậc của đa thức: `3`

`Q(x)=-5x^3+2x-3+2x-x^2-2`

`= -5x^3+(2x+2x)-x^2+(-3-2)`

`= -5x^3-x^2+4x-5`

Bậc của đa thức: `3`

`b,`

`P(x)=M(x)-Q(x)`

`-> M(x)=Q(x)+P(x)`

`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`

`= 5x^3-4x+7-5x^3-x^2+4x-5`

`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`

`= -x^2+2`

Vậy, `M(x)=-x^2+2`

`c,`

`-x^2+2=0`

`=> -x^2=0-2`

`=> -x^2=-2`

`=> x^2=2`

`=> x= \sqrt {+-2}`

Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`

a: P(x)=5x^3-4x+7

Q(x)=-5x^3-x^2+4x-5

b: M(x)=P(x)-Q(x)

=5x^3-4x+7+5x^3+x^2-4x+5

=10x^3+x^2-8x+12

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)