Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xet tam giac MNK va tam giac MPK co:
Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP ) (1)
MK ( canh chung ) (2)
MN = MP ( tam giac MNP can tai M ) (3)
Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )
b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va
goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )
ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA
Xet tam giac MNA va tam giac MPB co:
PB = NA ( gt ) (1)
MP = MN ( tam giac MNP can tai M ) (2)
goc MPB = goc MNA ( cmt ) (3)
Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )
=> MA = MB ( 2 canh tuong ung )
c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB
MED MBA MED MBA
Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )
ta có: góc DOB = góc OBC (so le trong)
mà góc DBO = góc OBC (gt)
=> góc DOB = góc DBO
=> DBO là tam giác cân
=> DO = DB *
tương tự như trên ta có:
góc EOC = góc ECO
=> OEC là tam giác cân
=> EO = CE **
từ * và ** => DE = BD + ED
làm bậy thui!! 5756756787696845737568
A B C D M N 1 2 3 1 2 3
Hình ko được chuẩn lắm thôm cảm
a)Vì \(BC//DM\Rightarrow\widehat{B_2}=\widehat{N_1}\)(Dấu hiệu nhận biết 2đt //)
Vì \(AB//MN\Rightarrow\widehat{D_1}=\widehat{N_2}\)(Dấu hiệu nhận biết 2đt //)
Xét \(\Delta DBN\) và \(\Delta NMD\) có
\(\widehat{B_2}=\widehat{N_1}\left(CMT\right)\)
DN chung
\(\widehat{D_1}=\widehat{N_2}\left(CMT\right)\)
\(\Rightarrow\Delta DBN=\Delta NMD\left(g.c.g\right)\)
Câu b chờ tí