K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

Hình tự vẽ nha

Ta luôn có:

\(AD>AB-BD\)

\(AD>AC-CD\)

Suy ra: \(2AD>AB+AC-\left(BD+CD\right)\)

Suy ra: \(AD>\frac{AB+AC-\left(BD+CD\right)}{2}>\frac{AB+AC-BC}{2}\)(1)

Mặt khác: 

\(AB>AD-BD\)

\(AC>AD-CD\)

Suy ra: \(AB+AC>2AD-\left(BD+CD\right)>2AD-BC\)

\(\Rightarrow AB+AC+BC>2AD\)

\(\Rightarrow\frac{AB+AC+BC}{2}>AD\)(2)

Từ (1) và (2)

......

BN tự Kết luận.

24 tháng 1 2019

1. A B C D E

Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC. 

Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)

Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)

(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)

Mà \(\widehat{ADB}=\widehat{ABD}\)

=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)

=> AC>AB

27 tháng 1 2019

A B C H

Xét tam giác ABC vuông tại A

Theo BĐT tam giác: \(AB< AC+BC\)

Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)

\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)

Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)

Hay \(AB+AC< AH+2CH+BH+AC\)

Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)

Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)

Hay \(AB+AC< 2AH+2CH+BC\)

Tới đây bí rồi.

18 tháng 3 2016

cứu tớ vs

18 tháng 3 2016

ta co d / ly hinh chieu 

nen bd<dc

=)ab<ac

5 tháng 3 2018

Tự vẽ hình

Trên tia đối của tia AD lấy điểm E sao cho D là trung điểm của AE

Xét t/g ABD và t/g ECD có:

BD = CD (gt)

góc ADB = góc EDC (đối đỉnh)

AD = DE (cách vẽ)

=> t/g ABD = t/g ECD (c.g.c)

=> AB = EC (2 cạnh t/ứ)

Xét t/g ACE có: AE < AC + CE

Mà AB = CE (cmt)

=> AE < AB + AC

Mà AE = 2AD (cách vẽ)

=> 2AD < AB + AC

=> \(AD< \frac{AB+AC}{2}\) (đpcm)