K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

Answer:

Bài 7:

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\widehat{A}+120^o+60^o+90^o=360^o\)

\(\Leftrightarrow\widehat{A}=90^o\)

Gọi góc ngoài đỉnh A là \(\widehat{DAx}\)

\(\Rightarrow\widehat{DAx}=180^o-\widehat{DAB}\)

\(\Rightarrow\widehat{DAx}=180^o-90^o=90^o\)

A B x D C

21 tháng 11 2021

Answer:

Bài 8:

a/ P là trung điểm BC (giả thiết)

N là trung điểm AC (giả thiết)

=> NP là đường trung bình

=> NP // AB hay NP // MB và \(NP=\frac{1}{2}AB\left(1\right)\)

Mà M là trung điểm của AB (giả thiết)

=> AM = MB = \(\frac{1}{2}AB\left(2\right)\)

Từ (1) và (2) => NP // MB và NP = MB

=> Tứ giác BMNP là hình bình hành

b/ Ta có: AM = NP và NP // MB hay NP // AM

=> AMPN là hình bình hành

Mà ta có \(\widehat{BAC}=90^o\)

=> AMPN là hình chữ nhật

=> AM = PN, AN = MP

c/ Vì Q đối xứng P qua N => PQ vuông góc AC, PN = NQ

Tương tự ta có: PR vuông góc AB, RM = MP

Ta xét hai tam giác RAM và AQN:

AM = QN (=NP)

\(\widehat{AMR}=\widehat{QNA}=90^o\)

RM = AN (=NP)

=> Tam giác RAM = tam giác AQN (c.g.c)

\(\Rightarrow\widehat{MAR}=\widehat{NQA}\)

Ta có: \(\widehat{NQA}+\widehat{QAN}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}=90^o\)

Ta có: \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAR}+\widehat{QAN}+\widehat{BAC}=180^o\)

=> R, A, Q thẳng hàng

C Q N M B R A P

24 tháng 10 2021

a: Xét ΔCAB có 

P là trung điểm của BC

N là trung điểm của AC

Do đó: PN là đường trung bình của ΔABC

Suy ra: PN//BM và PN=BM

hay BMNP là hình bình hành

10 tháng 3 2020

nhầm, 2.1,5 = 3, diện tích = 3 nhé :v

10 tháng 3 2020

A B C M E F N

a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90

=> BEMF là hình chữ nhật (dh)

b, MF _|_ BA

BC _|_ AB

=> MF // BC 

M là trung điểm của AC (gt)

=> MF là đường trung bình của tam giác ABC (đl)

=> F là trung điểm của AB

F Là trung điểm của MN 

=> BMAN là hình bình hành (dh)

MN _|_ AB

=> BMAN là hình thoi (dh)

c, MF là đtb của tam giác ABC (câu a) 

=> MF = BC/2 ; BC = 4 (Gt)

=> MF = 2

tương tự tính ra BF = 1,5

=> S BEMF = 4.1,5 = 6

7 tháng 8 2019

a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)

mà góc EBF =90 => góc DEB =90    (1)

Chứng minh tương tự với DF//AB

\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\)   (2)

Từ (1) và (2) => tứ giác BEDF là hình chữ nhật

7 tháng 8 2019

a) vì ED//BC và DF//AB

\(\Delta ABC\)vuông tại B

Nên \(DE\perp AB\)và \(DF\perp BC\)

Xét tứ giác BEDF có:

\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)

 Vậy tứ giác BEDF là hình chữ nhật       

5 tháng 11 2017

Mk lm đc phần a,b r mog các bn giúp mk phần c

Thanks

24 tháng 11 2017

câu b lm thế nào z chỉ mik vs

Bài làm

a) Xét tứ giác MBPA có:

N là trung điểm AB ( gt )

N là trung điểm của MP ( Do P đối vứng với M qua N )

=> Tứ giác MBPA là hình bình hành.

b) Vì tứ giác MBPA là hình bình hành

=> AP // MB ( hai cạnh đối ) => AP // CM

=> AP = MB ( hai cạnh đối )

Mà MB = CM ( Do M là trung điểm CB )

=> AP = CM 

Xét tứ giác PACM có:

 AP // CM ( cmt )

AP = CM ( cmt )

=> Tứ giác PACM là hình bình hành

Mà \(\widehat{ACB}=90^0\)

=> Tứ giác PACM là hình chữ nhật.

c) Gọi giao điểm của QC và AM là I

Xét tam giác BCQ có:

M là trung điểm BC

MI // QB 

=> MI là đường trung bình

=> MI = 1/2 BQ                               (1)

Vì PB // AM ( Do MBPA là hình bình hành )

=> PQ // MI 

=> \(\widehat{QPN}=\widehat{NMI}\)( Hai góc so le trong )

Xét tam giác QPN và tam giác IMN có

\(\widehat{QPN}=\widehat{NMI}\)( cmt )

PN = MN ( cmt )

\(\widehat{QNP}=\widehat{MNI}\)( hai góc đối đỉnh )

=> Tam giác QPN = tam giác IMN ( g.c.g )

=> MI = PQ                                             (2)

Từ (1) và (2) => PQ = 1/2 BQ => BQ = 2PQ ( đpcm )

25 tháng 4 2020

A B C M D Q P N

a.Vì N là trung điểm PM, AB

\(\Rightarrow MBPA\) là hình bình hành

b ) Từ câu a ) \(\Rightarrow PQ=BM=MC\) vì M là trung điểm BC 

\(PA//BM\Rightarrow PA//MC\)

\(\Rightarrow APMC\) là hình bình hành

Mà \(AC\perp BC\Rightarrow PACM\) là hình chữ nhật

c.Gọi D là trung điểm BQ \(\Rightarrow BD=DQ\)

\(\Rightarrow DM\) là đường trung bình \(\Delta BCQ\Rightarrow DM//CQ\Rightarrow DM//QN\)

Mà N là trung điểm PM

=> Q là trung điểm PD

\(\Rightarrow QP=QD\Rightarrow QP=QD=DB\Rightarrow BQ=2PQ\)

d.Để PACM là hình vuông

\(\Rightarrow AC=CM\Rightarrow AC=\frac{1}{2}BC\)