Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
a2+b2+c2 = ab+bc+ca
<=> 2(a2+b2+c2)= 2(ab+bc+ca)
<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thế vào pt thứ (2) ta được
a8 + b8 + c8 = 3
<=> 3a8 = 3
<=> a8 = 1
<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)
Từ (3) => P = 1 + 1 - 1 = 1
Từ (4) => P = - 1 + 1 + 1 = 1
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+3\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\frac{1}{a}\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\frac{1}{a}\frac{1}{b}\left(-\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\frac{1}{abc}=\frac{3}{abc}\)
Ta lại có :
\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{bca}{b^3}+\frac{cab}{c^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)
\(\)
Bài làm:
Ta có: \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
CM HĐT phụ:
Ta có: \(a^3+b^3+c^3=\left(a^3+b^3+c^3-3abc\right)+3abc\)
\(=\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\right]+3abc\)
\(=\left[\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\right]+3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)
Áp dụng vào trên ta được:
\(abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\left[\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\right]\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(P=abc.\frac{3}{abc}=3\)
Vậy P = 3
abc = 1 => a3b3c3=1
<=> \(a^3+b^3+c^3+2a^3b^3+2b^3c^3+2a^3c^3+3a^3b^3c^3\ge3a^2b+3b^2c+3c^2a+3\)
Áp dụng BĐT cauchy cho 3 số dương ta có :
\(a^3b^3+b^3c^3+a^3c^3\ge3\sqrt[3]{a^6b^6c^6}\) <=> \(a^3b^3+b^3c^3+a^3c^3\ge3\)Dấu = xảy ra khi a=b=c (1)
Tương tự ta có : \(a^3b^3c^3+a^3b^3+a^3\ge3a^2b\)Dấu = xảy ra duy nhất khi a=b=c=1 (2)
\(a^3b^3c^3+b^3c^3+b^3\ge3b^2c\) Dấu = xảy ra duy nhất khi a=b=c=1 (3)
\(a^3b^3c^3+a^3c^3+c^3\ge3c^2a\)Dấu = xảy ra duy nhất khi a=b=c=1 (4)
Cộng (1),(2),(3),(4) vế theo vế ta được ĐPCM (Dấu = xảy ra khi a=b=c=1)
Đây là cách giải của mình k rõ bạn làm sao nếu có cách khác hay hơn thì xin chỉ giáo :D
\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=18\) ( do ab+bc+ca = 9 )
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=18+2.9=36\)
\(\Rightarrow\)\(a+b+c=6\) ( do a,b,c là các số thực dương)
\(a^2+b^2+c^2=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(a^2+b^2+c^2=2a^2+2b^2+2c^2-2ab-2bc-2ca\)
\(a^2+b^2+c^2-2.\left(ab+bc+ca\right)=0\)( cùng bớt \(a^2+b^2+c^2\)ở cả 2 vế )
\(a^2+b^2+c^2-2.9=0\)
\(a^2+b^2+c^2=18\)
Ta có:
\(\left(a+b+c\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca\)
\(=18+2.\left(ab+bc+ca\right)\)
\(=18+2.9\)
\(=18+18\)
\(=36\)
\(\Rightarrow a+b+c=\sqrt{\left(a+b+c\right)^2}=\sqrt{36}=6\)
Vậy \(a+b+c=6\)
Tham khảo nhé~
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu b tại đây nhé.
Ta có:
\(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)
Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)