Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{2}{x^2+y^2}+\frac{1}{xy}=2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2.\frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}\geq \frac{8}{4^2}=\frac{1}{2}(1)\)
Áp dụng BĐT Cauchy:
\(\frac{32}{xy}+2xy\geq 2\sqrt{\frac{32}{xy}.2xy}=16(2)\)
\(4\geq x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 4\Rightarrow \frac{2}{xy}\geq \frac{2}{4}=\frac{1}{2}(3)\)
Từ \((1)+(2)+(3)\Rightarrow P\geq \frac{1}{2}+16+\frac{1}{2}=17\)
Vậy GTNN của $P$ là $17$ khi $x=y=2$
Áp dụng bđt Svacsơ ta có :
\(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
ta lại có : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)( bunhiacopxki )
\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3zx\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=3\)
\(\Rightarrow x+y+z\ge\sqrt{3}\)
\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{\sqrt{3}}{2}\) có GTNN là \(\frac{\sqrt{3}}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(P_{min}=\frac{\sqrt{3}}{2}\) tại \(x=y=z=\frac{1}{\sqrt{3}}\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
ta có x>=2y suy ra x-2y>=0
m=x^2/xy+y^2/xy điều kiện x,y khác 0
M=x/y+y/x
2M=2x/y+2y/x
2M=2.x/y+(-x+2y+x)/x
2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x
2m=2(x-2y)/y-(x-2y)/x+5
vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5
2M>=5
2M>5/2
vậy M=5/2
chưa chắc đã đúg đôu đúg tk mk nha
Đặt \(\frac{x}{y}=a\)
Vì \(x\ge2y>0\Rightarrow a\ge2\)
Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)
Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)
Từ điều kiện bài toán ta có
\(\hept{\begin{cases}\frac{x}{y}\ge1\\x-y\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{y}\ge1\\x^2-2xy+y^2\ge0\end{cases}}\)
Thế vào ta được
\(P=\frac{2x^2+y^2-2xy}{xy}\ge\frac{x^2}{xy}=\frac{x}{y}\ge1\)
Dấu = xảy ra khi x = y
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)
khó was