K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

Ta có: \(4ab\le2a^2+2b^2\)

=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)

=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)

Chứng minh tương tự 

=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)

Áp dụng bđt bunhia dạng phân thức

=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)

=> \(MinT=1\)xảy ra khi a=b=c=5/3

NV
2 tháng 3 2022

Ta có:

\(\left(2a^2-b^2-c^2\right)^2\ge0\)

\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)

\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)

Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)

Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)

\(P_{min}=\sqrt{3}\) khi \(a=b=c\)

11 tháng 11 2018

Theo BĐT \(AM-GM\) ta có :

\(\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}=\dfrac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\dfrac{\sqrt{3}a^2}{\dfrac{2a^2+2b^2+2c^2}{2}}=\dfrac{\sqrt{3}a^2}{a^2+b^2+c^2}\)

Tương tự ta có :

\(\dfrac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\dfrac{\sqrt{3}b^2}{a^2+b^2+c^2}\)

\(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\dfrac{\sqrt{3}c^2}{a^2+b^2+c^2}\)

Cộng từng vế BĐT :

\(\Rightarrow VT\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)

\("="\Leftrightarrow a=b=c\)

21 tháng 5 2019

Ta có :

\(2a^2+16ab+7b^2=\left(2a+3b\right)^2-2\left(a-b\right)^2\le\left(2a+3b\right)^2\)

=> \(P\ge\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(a+3\right)}{a}\)

Áp dụng bất đẳng thức cosi ta có

\(\frac{25a^2}{2a+3b}+2a+3b\ge10a\)

\(\frac{25b^2}{2b+3c}+2b+3c\ge10b\)

\(\frac{c^2\left(a+3\right)}{a}=\left(c^2+1\right)+(\frac{3c^2}{a}+3a)-3a-1\ge2c+6c-3a-1=8c-3a-1\)

Khi đó 

\(P\ge\left(10a-2a-3b\right)+\left(10b-2b-3c\right)+\left(8c-3a-1\right)\)

=> \(P\ge5\left(a+b+c\right)-1=14\)

Vậy \(MinP=14\)khi a=b=c=1

6 tháng 6 2020

 Con ma xanh đập 1 phát chết, con ma đỏ đập 2 phát thì chết. Làm sao chỉ với 2 lần đập mà chết cả 2 con?

16 tháng 5 2017

Lợi dụng Cauchy-Schwarz' inequality ta có:

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{ab+ac+bc+c^2}}\)

\(=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự ta cũng có:

\(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ca}{\sqrt{ca+2b}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{1}{2}\left(\dfrac{ab+bc}{a+c}+\dfrac{bc+ca}{a+b}+\dfrac{ab+ca}{b+c}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c\left(a+b\right)}{a+b}+\dfrac{a\left(b+c\right)}{b+c}\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\cdot2=1\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

20 tháng 5 2017

Ta có P=\(\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\dfrac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\dfrac{ac}{\sqrt{ac+\left(a+b+c\right)b}}\)

=\(\dfrac{ab}{\sqrt{ab+ac+bc+c^2}}+\dfrac{bc}{\sqrt{bc+ac+ab+a^2}}+\dfrac{ac}{\sqrt{ac+ab+bc+b^2}}\)

=\(\dfrac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}+\dfrac{bc}{\sqrt{b\left(a+c\right)+a\left(a+c\right)}}+\dfrac{ac}{\sqrt{c\left(a+b\right)+b\left(a+b\right)}}\)

=\(\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}+\dfrac{bc}{\sqrt{\left(b+a\right)\left(c+a\right)}}+\dfrac{ac}{\sqrt{\left(a+b\right)\left(c+b\right)}}\)

áp dụng bđt Cói ta có:

\(\sqrt{\left(a+c\right)\left(b+c\right)}\)\(\le\)\(\dfrac{2+c}{2}=1+\dfrac{c}{2}\)

\(\sqrt{\left(b+á\right)\left(c+a\right)}\)

18 tháng 12 2020

Ta có: \(P=\frac{25a^2}{\sqrt{2a^2+16ab+7b^2}}+\frac{25b^2}{\sqrt{2b^2+16bc+7c^2}}+\frac{c^2\left(3+a\right)}{a}\)\(=\frac{25a^2}{\sqrt{\left(2a+3b\right)^2-2\left(a-b\right)^2}}+\frac{25b^2}{\sqrt{\left(2b+3c\right)^2-2\left(b-c\right)^2}}+\frac{c^2\left(3+a\right)}{a}\)\(\ge\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(3+a\right)}{a}\)

Áp dụng bất đẳng thức AM - GM, ta có: \(\frac{25a^2}{2a+3b}+\left(2a+3b\right)\ge2\sqrt{\frac{25a^2}{2a+3b}.\left(2a+3b\right)}=10a\Rightarrow\frac{25a^2}{2a+3b}\ge8a-3b\)(1)

\(\frac{25b^2}{2b+3c}+\left(2b+3c\right)\ge2\sqrt{\frac{25b^2}{2b+3c}.\left(2b+3c\right)}=10b\Rightarrow\frac{25b^2}{2b+3c}\ge8b-3c\)(2)

\(\frac{c^2\left(3+a\right)}{a}=\frac{3c^2}{a}+c^2=\left(\frac{3c^2}{a}+3a\right)+\left(c^2+1\right)-3a-1\)\(\ge2\sqrt{\frac{3c^2}{a}.3a}+2c-3a-1=8c-3a-1\)(3)

Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(3+a\right)}{a}\ge5\left(a+b+c\right)-1=14\)

Vậy \(P\ge14\)

Đẳng thức xảy ra khi a = b = c = 1

NV
12 tháng 5 2021

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)

Tương tự:

\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)

Cộng vế với vế:

\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)

20 tháng 8 2023

Ta có \(ab+bc+ca=3abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và 

\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)

Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)

\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)

\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))

\(T\le\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)

Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)

 (Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)

20 tháng 8 2023

 Bạn Lê Song Phương xem lại dùm nhé, thanks!

\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)

\(...\Rightarrow T\le2.3=6\)

\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)