Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)
b: \(\sqrt{9\left(b-2\right)^2}=3\left(2-b\right)=-3b+6\)
c: \(\sqrt{25x^2\left(1-4y+4y^2\right)}=-5x\left(2y-1\right)=-10xy+5x\)
a: góc ABC=góc ACB=(180 độ-a)/2=90 độ-1/2*a
ABCM nội tiếp
=>góc AMD=góc ABC=90 độ-a/2
b: góc AMB=góc ACB
góc DMA=góc ABC
=>góc AMB=góc DMA
=>MA là phân giác của góc DMB
Xét ΔDMB có
MA vừa là đường cao, vừa là phân giác
=>ΔMDB cân tại M
=>MD=MB
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
VT=\(\frac{a^2}{ab+\frac{1}{b}}+\frac{b^2}{bc+\frac{1}{c}}+\frac{c^2}{ca+\frac{1}{a}}\)
áp dụng bđt cộng mẫu đc VT \(\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{\left(a+b+c\right)^2}{ab+bc+ca+\frac{ab+bc+ca}{abc}}\left(1\right)\)
Ta có \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\forall a,b,c\)
Nên \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\frac{\left(a+b+c\right)^2}{3abc}}=\frac{1}{\frac{1}{3}+\frac{1}{3abc}}=\frac{3abc}{1+abc}\left(đccm\right)\)
dấu bằng xảy ra <> a=b=c
A = 1/(a + 1) + 1/(b + 1) + 1/(c + 1) + 1/(d + 1) ≥ 3
→ 1/(a + 1) ≥ 1 - 1/(b + 1) + 1 - 1/(c + 1) + 1 - 1/(d + 1)
→ 1/(a + 1) ≥ b/(b + 1) + c/(c + 1) + d/(d + 1)
áp dụng BĐT Cauchy cho 3 số dương:
b/(b + 1) + c/(c + 1) + d/(d + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)]
→ 1/(a + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] tương tự
1/(b + 1) ≥ 3 ³√(acd)/[(a + 1)(c + 1)(d + 1)]
1/(c + 1) ≥ 3 ³√(abd)/[(a + 1)(b + 1)(d + 1)]
1/(d + 1) ≥ 3 ³√(abc)/[(a + 1)(b + 1)(c + 1)]
nhân theo vế → 1/[(a + 1)(b + 1)(c + 1)(d + 1)] ≥ 81abcd/[(a + 1)(b + 1)(c + 1)(d + 1)]
→ 1 ≥ 81abcd → abcd ≤ 1/81