K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Sửa lại đề \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\) (cái này có trong CHTT rồi nhé nhưng giờ bỗng dưng rảnh làm lại luôn đỡ mất công tìm)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(a+b+c\right)\left(a'+b'+c'\right)\)

\(\ge\left(\sqrt{a\cdot a'}+\sqrt{b\cdot b'}+\sqrt{c\cdot c'}\right)=VT^2\)

Tức là \(VP\ge VT\)

Xảy ra khi \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

22 tháng 7 2018

\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )

\(b.A>\dfrac{1}{3}\)\(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)

\(3-\sqrt{x}>0\)

\(x< 9\)

Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?

\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)

\(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)

22 tháng 7 2018

\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .

\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .

\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

30 tháng 12 2017

Bài 1, t nghĩ VP căn phải kéo dài hết

Áp dụng bđt bu nhi a, ta có 

\(\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Rightarrow\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\left(ĐPCM\right)\)

Bài 2, Áp dụng bài 1, ta có 

\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)\le\left(a^2+b^2\right)\left[3a\left(a+2b\right)+3b\left(b+2a\right)\right]\)

\(\le2\left(3a^2+6ab+3b^2+6ab\right)=2\left[3\left(a^2+b^2\right)+12ab\right]\le2\left(6+12ab\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab\Rightarrow2\ge2ab\Rightarrow12\ge12ab\)

=>(...)^2<=36 => ...<=6 (ĐPcM)

dấu = xảy ra <=> a=b=1

^_^

13 tháng 6 2019

2. 

Từ giả thiết, ta có : 

\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)

\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Tương tự, ta cũng có : 

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :

\(abcd\le\frac{1}{81}\left(đpcm\right)\)

13 tháng 6 2019

2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)

\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)

                  \(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)

Tương tự :

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)

Từ đó suy ra:

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)

\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)

Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)

3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)

Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được 

\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)

Từ (1) và (2) suy ra:

\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)

Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)

1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)

Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:

\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)

\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)

\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)

Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)