Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Đặt
\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)
Khi đó:
\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)
\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)
\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)
\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)
Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)
Ta có:
Áp dụng tính chất dãy tỉ số bằng nhau thì:
\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)
Khi đó:
\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)
Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)
Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix}
1\\
-5\end{matrix}\right.\)
1) Đặt \(B=x^2+y^2+z^2\)
\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)
Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)
Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Bạn tham khảo bài tương tự tại đây:
Câu hỏi của Rồng Con - Toán lớp 8 | Học trực tuyến
Bài 3.a) ( x + 2)( x + 3)( x + 4)(x + 5) = 24
⇔ ( x2 + 7x + 10 )( x2 + 7x + 12) = 24
Đặt : x2 + 7x + 11 = t , ta có :
( t - 1)( t + 1) = 24
⇔ t2 - 25 = 0
⇔ t = 5 hoặc t = -5
+) Với : t = 5 , ta có :
x2 + 7x + 11 = 5
⇔ x2 + x + 6x + 6 = 0
⇔ x( x + 1) + 6( x + 1) = 0
⇔ ( x + 1)( x + 6) = 0
⇔ x = -1 hoặc x = - 6
+) x2 + 7x + 11 = - 5
⇔ x2 + 7x + 16 = 0
Ta thấy : x2 + 2.\(\dfrac{7}{2}x+\dfrac{49}{4}+16-\dfrac{49}{4}=\left(x+\dfrac{7}{x}\right)^2+\dfrac{15}{4}>0\)
⇒ Phương trình vô nghiệm
KL.......
b) ( 4x + 1)( 12x - 1)( 3x + 2)( x + 1) = 4
⇔ 3( 4x + 1)( 12x - 1)4( 3x + 2)12( x + 1) = 4.4.3.12
⇔ ( 12x + 3)( 12x - 1)( 12x + 8)( 12x + 12) = 576
⇔ ( 144x2 + 132x + 24)( 144x2 + + 132x - 12) = 576
Đặt : 144x2 + 132x + 24 = t , ta có :
t( t - 36) = 576
⇔ t2 - 36t - 576 = 0
⇔ t2 + 12t - 48t - 576 = 0
⇔ t( t + 12) - 48( t + 12) = 0
⇔ ( t + 12)( t - 48) = 0
Đến đây dễ rùi , bạn tự giải ra nhé.
a)Áp dụng BĐT AM-GM ta có:
\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)
\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)
Xảy ra khi \(x=y\)
b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)
Đúng với AM-GM 4 số
Xảy ra khi \(x=y=z=t\)