\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2022

`Answer:`

Có `a^2.(b+c)=b^2.(a+c)`

`<=>a^2.b+a^2.c-ab^2-b^2.c=0`

`<=>ab.(a-b)+c.(a^2-b^2)=0`

`<=>(a-b)(ab+c(a+b))=0`

`<=>(a-b)(ab+ac+bc)=0`

`<=>ab+ac+bc=0`

Lúc này  `P=c^2.(a+b)=c.(ac+bc)=c.(-ab)=-abc`

Mà `a^2.(b+c)=a.(ab+ac)=a.(-bc)=-abc=2022`

Vậy `P=2022`

10 tháng 4 2017

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)

=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))

=> ac + bc - ab - ac = 0

=> bc - ab = 0

=> b(c - a) = 0

Mà b \(\ne0\) nên c - a = 0 => c = a

Tương tự ta có: a = b

Từ đó có: a = b = c

Thay vào M được:

\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

9 tháng 11 2017

1+1=3

1234567

NV
9 tháng 12 2018

Do \(a,b,c\ne0\)

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)

\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{a}{ac}+\dfrac{c}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\b=a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)

20 tháng 12 2017

Ta có:

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)

<=> \(ab\cdot\left(b+c\right)=bc\cdot\left(a+b\right)\)

<=> \(b^2\cdot\left(a-c\right)=0\)

<=> \(a=c\)

Làm tương tự ta được \(b=a\) => a=b=c

=> M=1

3a-b=1/2(a+b)

=>6a-2b=a+b

=>5a=3b

=>a/3=b/5=k

=>a=3k; b=5k

\(A=\dfrac{a^{2022}+3^{2022}}{b^{2022}+5^{2022}}\)

\(=\dfrac{3^{2022}\left(k^{2022}+1\right)}{5^{2022}\left(k^{2022}+1\right)}=\left(\dfrac{3}{5}\right)^{2022}\)