Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(a+b+ab=3\Rightarrow a+b=3-ab\ge3-\frac{\left(a+b\right)^2}{4}\)
\(\Rightarrow\left(a+b+6\right)\left(a+b-2\right)\ge0\Rightarrow a+b\ge2\)
Biến đổi bài toán như sau:
\(P=\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}-a^2-b^2\le\frac{3}{2}\)
Tức là chứng minh \(\frac{3}{2}\) là GTLN của \(P\)
\(P=\frac{3\left(a^2+b^2\right)+3\left(a+b\right)}{ab+a+b+1}+\frac{3-a-b}{a+b}-\left(a+b\right)^2++2\left(3-a-b\right)\)
\(=\frac{3}{4}\left[3\left(a+b\right)^2-6\left(3-a-b\right)+3\left(a+b\right)\right]\)
\(+\frac{3}{a+b}-1-\left(a+b\right)^2+6-2\left(a+b\right)\)
Khảo sat đồ thì trên \(a+b\ge2\) tìm tìm được \(P_{Max}=\frac{3}{2}\)
P/s:giờ mk đi ngủ, mệt r` chỗ nào khó hiểu mai hỏi :D
ta có: \(VT=\frac{a\left(a+b+ab\right)}{b+1}+\frac{b\left(a+b+ab\right)}{a+1}+\frac{ab}{a+b}\)
\(=a^2+b^2+\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\)
cần cm \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}\)
theo giả thiết \(4=\left(a+1\right)\left(b+1\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow a+b\ge2\)
ta có: \(\frac{ab}{a+b}=\frac{ab+a+b}{a+b}-1=\frac{3}{a+b}\le\frac{3}{2}-1\)(*)
\(\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{1}{4}\left(b+ab\right)+\frac{1}{4}\left(a+ab\right)=\frac{1}{4}\left(3+ab\right)\)(**)
giờ cần tìm max ab.để ý rằng \(ab=ab+a+b-\left(a+b\right)=3-\left(a+b\right)\le3-2=1\)
khi đó \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}-1+\frac{1}{4}\left(3+1\right)=\frac{3}{2}\)(đpcm)
dấu = xảy ra khi a=b=1
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$\frac{2}{ab}+\frac{3}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{a^2+b^2}+\frac{1}{a^2+b^2}$
$\geq \frac{(1+1+1+1+1+1+1)^2}{2ab+2ab+2ab+2ab+a^2+b^2+a^2+b^2+a^2+b^2}=\frac{49}{8ab+3(a^2+b^2)}$
$=\frac{49}{3(a+b)^2+2ab}\geq \frac{49}{3(a+b)^2+\frac{(a+b)^2}{2}}=\frac{49}{3+\frac{1}{2}}=14$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{2}$
\(VT=3\left(\dfrac{1}{4ab}+\dfrac{1}{a^2+4b^2}\right)+\dfrac{1}{2.a.2b}\ge\dfrac{12}{a^2+4ab+4b^2}+\dfrac{2}{\left(a+2b\right)^2}=14\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)
b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)
\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )
mà \(a^2+b^2+c^2\ge ab+bc+ac\)
\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm )
1.
Điều kiện x \ge \dfrac14x≥41.
Phương trình tương đương với \left(\sqrt2.\sqrt{2x^2+x+1}-2\right)-\left(\sqrt{4x-1}-1\right)+2x^2+3x-2 = 0(2.2x2+x+1−2)−(4x−1−1)+2x2+3x−2=0 \Leftrightarrow \dfrac{4x^2+2x-2}{\sqrt2.\sqrt{2x^2+x+1}+2} - \dfrac{4x-2}{\sqrt{4x-1}+1} + (x+2)(2x-1) = 0⇔2.2x2+x+1+24x2+2x−2−4x−1+14x−2+(x+2)(2x−1)=0\\ \Leftrightarrow (2x-1)\left(\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2\right) = 0⇔(2x−1)(22x2+x+1+22(x+1)−4x−1+12+x+2)=0
\Leftrightarrow \left[\begin{aligned} & x =\dfrac12\\ & \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 = 0\\ \end{aligned}\right.⇔⎣⎢⎢⎢⎡x=2122x2+x+1+22(x+1)−4x−1+12+x+2=0
Với x \ge \dfrac14x≥41 ta có:
\dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} > 022x2+x+1+22(x+1)>0
- \dfrac2{\sqrt{4x-1}+1} \ge -2−4x−1+12≥−2
x + 2 > 2x+2>2.
Suy ra \dfrac{2(x+1)}{\sqrt2 \sqrt{2x^2+x+1}+2} - \dfrac2{\sqrt{4x-1}+1} + x + 2 > 022x2+x+1+22(x+1)−4x−1+12+x+2>0.
Vậy phương trình có nghiệm duy nhất x = \dfrac12.x=21.
2.
Đặt P = \dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b}P=b+2ca3+c+2ab3+a+2bc3
Áp dụng bất đẳng thức Cauchy cho hai số dương \dfrac{9a^3}{b + 2c}b+2c9a3 và (b+2c)a(b+2c)a ta có
\dfrac{9a^3}{b+2c} + (b+2c)a \ge 6a^2b+2c9a3+(b+2c)a≥6a2.
Tương tự \dfrac{9b^3}{c+2a} + (c+2a)b \ge 6b^2c+2a9b3+(c+2a)b≥6b2, \dfrac{9c^3}{a+2b} + (a+2b)c \ge 6c^2a+2b9c3+(a+2b)c≥6c2.
Cộng các vế ta có 9P + 3(ab+bc+ca) \ge 6(a^2+b^2+c^2)9P+3(ab+bc+ca)≥6(a2+b2+c2).
Mà a^2+b^2+c^2 \ge ab+bc+ca = 4a2+b2+c2≥ab+bc+ca=4 nên P \ge 1P≥1 (ta có đpcm).
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)