Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình thiếu: chứng minh các giá trị của các đa thức tìm được không thay đổi khi thay x bởi -x.
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
f(x)=x2+2x3−7x5−9−6x7+x3+x2+x5−4x2+3x7
= -9 - 2x2 + 3x3 - 6x5 - 3x7
g(x)=x5+2x3−5x8−x7+x3+4x2−5x7+x4−4x2−x6−12
= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8
h(x)=x+4x5−5x6−x7+4x3+x2−2x7+x6−4x2−7x7+x
= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7
b) Tính f(x) + g(x) − h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8
P(x)+Q(x)+R(x) = \(9{x^4} - 3{x^3} + 5x - 1 - 2{x^3} - 5{x^2} + 3x - 8 - 2{x^4} + 4{x^2} + 2x - 10\)
\(\begin{array}{l} = (9{x^4} - 2{x^4})+( - 3{x^3} - 2{x^3})+( - 5{x^2} + 4{x^2}) +( 5x + 3x + 2x)+( - 8 - 10 - 1)\\ = 7{x^4} - 5{x^3} - {x^2} + 10x - 19\end{array}\)
P(x)-Q(x)-R(x) = \(9{x^4} - 3{x^3} + 5x - 1 + 2{x^3} + 5{x^2} - 3x + 8 + 2{x^4} - 4{x^2} - 2x + 10\)
\(\begin{array}{l} = (9{x^4} + 2{x^4})+( - 3{x^3} + 2{x^3} )+ (5{x^2} - 4{x^2}) + (5x - 3x - 2x) + (10 - 1 + 8)\\ = 11{x^4} - {x^3} + {x^2} + 17\end{array}\)
a) \(P\left(-1\right)=\left(-1\right)^2+\left(-1\right)^4+...+\left(-1\right)^{106}\)
\(=1+1+...+1\)
=53
b) \(Q\left(-1\right)=\left(-1\right)+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{107}\)
\(=-1\cdot54=-54\)
a) ta có : \(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.\left(25-5+1\right)\)
\(5^3.21=5^3.3.7⋮7\) (đpcm)
b) ta có : \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)\)
\(=7^4.55=7^4.5.11⋮11\) (đpcm)
c) ta có : \(3^{x+2}-2^{x+3}+3^x-2^{x+1}=3^{x+2}+3^x-2^{x+3}-2^{x+1}\)
\(=3^x\left(3^2+1\right)-2^x\left(2^3+2\right)=3^x.\left(9+1\right)-2^x.\left(8+2\right)\)
\(=3^x.10-2^x.10=10\left(3^x-2^x\right)⋮10\) (đpcm)
d) \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}=3^x.\left(3^3+3\right)+2^x.\left(2^3+2^2\right)\)
\(=3^x.\left(27+3\right)+2^x\left(8+4\right)=3^x.30+2^x.12=6.\left(3^x.5+2^x.2\right)⋮6\) (đpcm)
a)Ta có:\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21\)(vì 21 chia hết cho 7)
\(\)\(\RightarrowĐPCM\)
b)Ta có: \(7^6+7^5-7^4⋮11=7^4\left(7^2+7-1\right)=7^4.55⋮11\)
\(\Rightarrowđpcm\)
Ta có \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\)
Vì 53.3 là số nguyên nên \(5^3.3.7⋮7\)
Vậy \(5^5-5^4+5^3⋮7\)
c) \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}\)
\(=\left(3^{x+3}+3^{x+1}\right)+\left(2^{x+3}+2^{x+2}\right)\)
\(=3^x\left(3^2+3\right)+2^x\left(2^2+2\right)\)
\(=3^x.12+2^x.6\)
\(=6\left(2.3^x+2^x\right)\)
Vì \(2.3^x+2^x\in Z\)
Nên : \(6\left(2.3^x+2^x\right)⋮6\)
Vậy \(3^{x+3}+3^{x+1}+2^{x+3}+2^{x+2}⋮6\)
Ta có: P(x) - Q(x) + R(x)
=(-5x3 + 7x2 - x + 8) - (4x3 - 7x + 3) - (6x3 + 4x)
=-5x3 + 7x2 - x + 8 - 4x3 + 7x - 3 + 6x3 + 4x
= -3x3 + 7x2 + 10x + 5. Chọn D