K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 7 2020

Gọi \(M\left(x;y\right)\) là điểm cố định mà (C) đi qua

\(\Leftrightarrow x^2+y^2+\left(m+2\right)x-\left(m+4\right)y+m+1=0\) ;\(\forall m\)

\(\Leftrightarrow x^2+y^2+2x-4y+1+m\left(x-y+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2x-4y+1=0\\x-y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2x-4y+1=0\\y=x+1\end{matrix}\right.\)

\(\Rightarrow x^2+\left(x+1\right)^2+2x-4\left(x+1\right)+1=0\)

\(\Leftrightarrow2x^2-2=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=-1\Rightarrow y=0\end{matrix}\right.\)

\(\Rightarrow\) (C) luôn đi qua 2 điểm cố định \(A\left(1;2\right);B\left(-1;0\right)\)

\(\Rightarrow\) Đường tròn luôn có dây cung cố định AB

\(\Rightarrow\) Để bán kính đường tròn là nhỏ nhất khi và chỉ khi AB là đường kính

\(\Leftrightarrow\) Tâm I là trung điểm AB \(\Rightarrow I\left(0;1\right)\)

\(\Rightarrow m=-2\)

NV
3 tháng 7 2020

1.

Ta có: \(m^2+\left(m-1\right)^2=2m^2-2m+1=\frac{1}{2}\left(2m-1\right)^2+\frac{1}{2}>0;\forall m\)

\(\Rightarrow\) Với mọi m pt đã cho là pt đường tròn

2.

\(R=\sqrt{\frac{1}{2}\left(2m-1\right)^2+\frac{1}{2}}\)

\(\Rightarrow R\ge\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)

\(R_{min}=\frac{\sqrt{2}}{2}\) khi \(m=\frac{1}{2}\)

3.

Đường tròn tâm \(I\left(x_I;y_I\right)\Rightarrow\left\{{}\begin{matrix}x_I=m\\y_I=m-1\end{matrix}\right.\)

\(\Rightarrow x_I-y_I=1\Leftrightarrow x_I-y_I-1=0\)

\(\Rightarrow\) Tập hợp tâm I là đường thẳng có pt \(x-y-1=0\)

4.

Gọi \(M\left(x;y\right)\) là điểm cố định mà đường tròn đi qua

\(\Rightarrow x^2+y^2-2mx-2my+2y=0\)

\(\Leftrightarrow x^2+y^2+2y-2m\left(x+y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+2y=0\\x+y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+2y=0\\y=-x\end{matrix}\right.\)

\(\Rightarrow x^2+\left(-x\right)^2-2x=0\)

\(\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=1\Rightarrow y=-1\end{matrix}\right.\)

\(\Rightarrow\) Đường tròn luôn đi qua 2 điểm cố định có tọa độ \(\left(0;0\right);\left(1;-1\right)\)

5.

Phương trình hoành độ giao điểm:

\(\left\{{}\begin{matrix}x^2+y^2-2mx-2\left(m-1\right)y=0\\x+y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2mx-2\left(m-1\right)y=0\\y=1-x\end{matrix}\right.\)

\(\Rightarrow x^2+\left(1-x\right)^2-2mx-2\left(m-1\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+1-2mx-\left(2m-2\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-4x-2m+3=0\)

\(\Delta'=4-2\left(-2m+3\right)=4m-2=0\Rightarrow m=\frac{1}{2}\)

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m. Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π) a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα). b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình. Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng...
Đọc tiếp

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m.

Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π)

a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα).

b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình.

Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng (△) và đường tròn (C).

a, (C): x2 + y2 + 2x - 4y + 4 = 0 và (△): mx - y + 2 = 0.

b, (C): x2 + y2 - 4x + 6y + 3 = 0 và (△): 3x - y + m = 0.

Bài 4: Cho đường tròn (C): x2 + y2 - 2x - 4y - 4 = 0 và (C'): x2 + y2 + 6x - 2y + 1 = 0.

a, Chứng minh (C) và (C') cắt nhau tại hai điểm A, B.

b, Cho điểm M(4;1). Chứng minh qua M có hai tiếp tuyến đến (C). Gọi E, F là hai tiếp điểm của hai tiếp tuyến trên với (C). Hãy lập phương trình đường tròn (C) ngoại tiếp với △ MEF.

0
NV
15 tháng 10 2019

Từ đề bài \(\Rightarrow a>0\) và:

\(\left\{{}\begin{matrix}\frac{4ac-b^2}{4a}=-5\\a+b+c=-1\\c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2=36a\\a+b=-5\\c=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{b^2}{36}\\\frac{b^2}{36}+b+5=0\\c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=4\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=25\\b=-30\\c=4\end{matrix}\right.\)