K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(1+3+3^2+....+3^{11}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=40+3^4.40+3^8.40\)

\(=40\left(1+3^4+3^8\right)⋮40\)

Vậy \(C⋮40\)

19 tháng 7 2017

\(1+3+3^2+...+3^{11}\)

\(\Leftrightarrow\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(\Leftrightarrow40+3^4.40+3^8.40\)

\(\Leftrightarrow40\left(1+3^8+3^4\right)⋮40\)

\(\Rightarrow1+3+3^2+...+3^{11}⋮40\left(đpcm\right)\)

13 tháng 7 2016

a) C = 1 + 3 + 32 + 33 + ... + 311

    C = 30 + 3 + 32 + 33 + ... + 311

    C = ( 30 + 3 + 32 ) + ( 33 + 34 + 35 ) + ... + ( 39 + 310 + 311 )

    C = ( 30 + 3 + 32 ) + 33 . ( 30 + 3 + 32 ) + ... + 39 . ( 30 + 3 + 32 )

    C = 13 + 33 . 13 + ... + 39 . 13

    C = 13 . ( 1 + 33 + ... + 39 ) \(⋮\) 13 ( đpcm )

b) C = 1 + 3 + 32 + 33 + ... + 311

    C = 30 + 3 + 32 + 33 + ... + 311

    C = ( 30 + 3 + 32 + 3) + ( 34 + 35 + 36 + 37 ) + ( 38 + 39 + 310 + 311 )

   C = ( 30 + 3 + 32 + 33 ) + 34 . ( 30 + 3 + 32 + 33 ) + 38 . ( 30 + 3 + 32 + 33 )

   C = 40 + 34 . 40 + 38 . 40

   C = 40 . ( 1 + 34 + 38 ) \(⋮\) 40 ( đpcm )

c) A = 4 + 42 + 43 + ... + 423 + 424

    A  = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 423 + 424 )

    A = ( 4 + 42 ) + 42 . ( 4 + 42 ) + ... + 422 . ( 4 + 42 )

    A = 20 + 42 . 20 + ... + 422 . 20

    A = 20 . ( 1 + 42 + ... + 422 ) \(⋮\) 20 ( đpcm )

d) A = 4 + 42 + 43 + ...+ 423 + 424

   A = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + .... + ( 422 + 423 + 424 )

   A = ( 4 + 42 + 43 ) + 43 . ( 4 + 42 + 43 ) + ... + 421 . ( 4 + 42 + 43 )

  A = 84 + 43 . 84 + ... + 421 . 84

  A = 84 . ( 1 + 43 + ... + 421 ) 

Vì 81 \(⋮\) 9

=> A = 84 . ( 1 +43 + ... + 421 ) \(⋮\) 21 ( đpcm )

e) A = 4 + 42 + 43 + ... + 423 + 424

   A = ( 4 + 42 + 43 + 44 + 45 + 46 ) + ... + ( 417 + 418 + 419 + 421 + 422 + 423 + 424 )

   A = ( 4 + 42 + 43 + 44 + 45 + 46 ) + ...+ 416 . ( 4 + 42 + 43 + 44 + 45 + 46 )

    A = 5460 + ... + 416 . 5460

    A = 5460 . ( 1 + ... + 416 )

Vì 5460 \(⋮\) 420

=> A = 5460 . ( 1 + ... + 416 ) \(⋮\) 420 ( đpcm )

15 tháng 1 2017

Giải:

*A = 4 + 42 + 43 + ... + 423 + 424

A = (4 + 42) + (43 + 44) + ... + (423 + 424)

A = 1 . (4 + 42) + 42 . (4 + 42) + ... + 422 . (4 + 42)

A = 1 . 20 + 42 . 20 + ... + 422 . 20

A = 20 . (1 + 42 + ... + 422)

Vì 20 \(⋮\)20 nên suy ra 20 . (1 + 42 + ... + 422) \(⋮\)20

=> A \(⋮\)20

Vậy A \(⋮\)20

*A = 4 + 42 + 43 + ... + 423 + 424

A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (422 + 423 + 424)

A = 4 . (1 + 4 + 42) + 44 . (1 + 4 + 42) + ... + 422 . (1 + 4 + 42)

A = 4 . 21 + 44 . 21 + ... + 422 . 21

A = 21 . (4 + 44 + ... + 422)

Vì 21\(⋮\)21 nên suy ra 21 . (4 + 44 + ... + 422) \(⋮\)21

=> A \(⋮\)21

Vậy A \(⋮\)21

*A = 4 + 42 + 43 + ... + 423 + 424

A = (4 + 42 + 43 + 44 + 45 + 46) + (47 + 48 + 49 + 410 + 411 + 412) + ... + (419 + 420 + 421 + 422 + 423 + 424)

A = 1 . (4 + 42 + 43 + 44 + 45 + 46) + 46 . (4 + 42 + 43 + 44 + 45 + 46) + ... + 418 . (4 + 42 + 43 + 44 + 45 + 46)

A = 1 . 5460 + 46 . 5460 + ... + 418 . 5460

A = 5460 . (1 + 46 + ... + 418)

Vì 5460 \(⋮\)420 nên suy ra 5460 . (1 + 46 + ... + 418) \(⋮\)420

=> A \(⋮\)420

Vậy A \(⋮\)420.

Chúc bạn học tốt!

29 tháng 4 2018

Ta có : 

\(C=1+3+3^2+3^3+...+3^{11}\)

\(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(C=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)

\(C=\left(1+3+9+27\right)+3^4\left(1+3+9+27\right)+3^8\left(1+3+9+27\right)\)

\(C=40+3^4.40+3^8.40\)

\(C=40\left(1+3^4+3^8\right)⋮40\)

Vậy \(C⋮40\)

Chúc bạn học tốt ~ 

29 tháng 4 2018

Bạn đặt cặp của 1 + 3 + 3^2 + 3^3 = 1 + 3 + 9 + 27 = 40

27 tháng 7 2015

Cho C= 1+3+32+...+311

a) \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3\right)\)

\(=40+3^4.40+3^8.40\)

\(=40.\left(1+3^4+3^8\right)\) chia hết cho 40.

b) \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^9.13\)

\(=13.\left(1+3^3+3^6+3^9\right)\)chia hết cho 13

=> điều phải chứng minh

27 tháng 7 2015

Rất cảm ơn cậu nhé

 

17 tháng 11 2016

Ta có :

(+) \(A=\left(1+3^2\right)+3\left(1+3^2\right)+....+3^9\left(1+3^2\right)\)

\(=>A=10+3.10+....+3^9.10\)

=> A chia hết cho 10

=> A chia hết cho 5

(+) \(A=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)

\(=>A=4+3^2.4+....+3^{10}.4\)

\(=>A=4\left(1+3^2+3^4+3^6+3^8+3^{10}\right)\)

Dễ thấy 1 + 32 + 34 + 36 + 38 + 310 chẵn

=> A chia hết cho 8

Mà (8;5)=1

=> A chia hết chp 8x5

=> A chia hết cho 40

17 tháng 11 2016

Nhầm rồi kìa, C mà.

14 tháng 10 2017

\(C=1+3+3^2+.....+3^{11}.\)

\(\Rightarrow C=\left(1+3+3^2\right)+.....+\left(3^9+3^{10}+3^{11}\right)\)

\(\Rightarrow C=13+3^3.13+....+3^9.13\)

\(\Rightarrow C=13.\left(1+3^3+....+3^9\right)\)

Vì \(13⋮13\)

Do đó : \(C⋮13\)

\(C=1+3+3^2+.....+3^{11}\)

\(\Rightarrow C=\left(1+3+3^2+3^3\right)+....+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(\Rightarrow C=40+40.3^4+3^8.40\)

\(\Rightarrow C=40.\left(1+3^4+3^8\right)\)

Vì \(40⋮40\)

Do đó  \(C⋮40\)(đpcm)

14 tháng 10 2017

a,C1+3+32)+.....+39,(1+3+32)

C=13+.....+39.13

C=13(1+.....+39) chia hết cho 13

Vậy C chia hết cho 13

b,C=(1+3+32+33)+.....+38(1+3+32+33)

   C=40+.....+38+40

    C=40(1+.....+38.40

    C=40(1+.....+38 chia hết cho 40

Vậy C chia hết cho 40

6 tháng 3 2020

Bạn tham khảo 2 link này:

b) https://olm.vn/hoi-dap/detail/104629170538.html

a)https://olm.vn/hoi-dap/detail/8732513603.htm

6 tháng 3 2020

C=như trên

đến đoạn này mình thấy đề bạn thiếu hay sao ý . đnág nhẽ là C=1+3+3^2+3^3 +..+3^1 ko  nên làm theo cái mình sửa nhá

=> 3C=\(3+3^2+3^3+3^4+...+3^{12}\)

=>3C-C=\(\left(3+3^2+3^3+3^4+...+3^{12}\right)-\left(1+3+3^2+3^3+...+3^{11}\right)\)

=>2C=\(3^{12}-1=531440⋮40\)

=> 2C chia hết cho 40 

=> C cũng chia hết cho 40