K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

Ai giúp đi, mik lazy lắm

26 tháng 10 2021

\(\dfrac{a}{c}=\dfrac{a^2+b^2}{b^2+c^2}\)

\(VP=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}=VT\left(đpcm\right)\)

8 tháng 8 2017

Giải:

Từ \(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\left(1\right)\)

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(2\right)\)

Kết hợp \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\) (Đpcm)

4 tháng 10 2017

bạn nào giúp mình với khocroikhocroikhocroi

4 tháng 10 2017

mình cần gấp bạn nào giỏi toán giúp mình với

4 tháng 4 2017

Đặt \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{z}{c}\) = k \(\Rightarrow\)x=ak;y=bk ; z=ck.

(x+y+z)2=(ak+bk+ ck)2=[k(a+b+c)]2=

k2(a+b+c)2=k2(vì a+b+c=1nên(a+b+c)2=1)(1)

x2+y2+z2=(ka)2+(kb)2+(kc)2=k2a2+k2b2+k2b2

=k2(a2+b2+c2)=k2 (vì a2+b2+c2=1) (2)

Từ (1) và (2), \(\Rightarrow\) (x+y+z)2=x2+y2+z2=k2

4 tháng 4 2017

toàn làm bài dễ vậy ngon làm bài này đi

2 tháng 4 2017

Áp dụng tc dãy tỉ số bằng nhau ta có:\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}=x+y+z\)\(\Rightarrow\dfrac{x^2}{a^2}=\left(x+y+z\right)^2\left(1\right)\)

Từ \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}=x^2+y^2+z^2\)

\(\Rightarrow\dfrac{x^2}{a^2}=x^2+y^2+z^z\left(2\right)\)

Từ (1),(2)\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)

2 tháng 4 2017

+Ta có :\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)\(=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)(vì a + b+c =1)

=>\(\left(\dfrac{x^2}{a^2}\right)=\left(\dfrac{y^2}{b^2}\right)=\left(\dfrac{z^2}{c^2}\right)=\dfrac{\left(x+y+z\right)2}{1}\)(1)

+Vì \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

=>\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}\)(vì a2 + b2 + c2 =1 ) (2)

Từ (1) và(2)=> ( x + y + z )2 = x2 + y2 + z2.

Vậy.........

9 tháng 10 2017

2.

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)

26 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{x}{x+y+z}\\b=\dfrac{y}{x+y+z}\\c=\dfrac{z}{x+y+z}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2}{\left(x+y+z\right)^2}+\dfrac{y^2}{\left(x+y+z\right)^2}+\dfrac{z^2}{\left(x+y+z\right)^2}=1\)

\(\Rightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2=x^2+y^2+z^2-2\left(xy+yz+zx\right)\)

\(\Rightarrow2\left(xy+yz+zx\right)=0\)

\(\Rightarrow xy+yz+zx=0\) (đpcm)

26 tháng 8 2018

ai giúp mình với mình đang cần gấp

31 tháng 7 2018

Bài 1.

a) Nhân 2 vào tỉ số thứ 2 rồi áp dụng tính chất của dãy tỉ số bằng nhau.

Kết quả:

\(\left\{{}\begin{matrix}x=\dfrac{8}{3}\\y=3\\z=\dfrac{8}{3}\end{matrix}\right.\)

b) \(\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)

Theo tính chất dãy tỉ số bằng nhau:

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2+y^2}{4+9}=\dfrac{52}{13}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\end{matrix}\right.\)

Vậy ...

Bài 2.

a) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{ac}{bd}=\dfrac{c^2}{d^2}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}\)

\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

Vậy ...

31 tháng 7 2018

2:

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=i\Rightarrow\left\{{}\begin{matrix}a=bi\\c=di\end{matrix}\right.\)

Ta có:

\(\dfrac{ac}{bd}=\dfrac{c^2i}{d^2i}=\dfrac{c^2}{d^2}=\left(\dfrac{c}{d}\right)^2=i^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2i^2+d^2i^2}{b^2+d^2}=\dfrac{i^2\left(b^2+d^2\right)}{b^2+d^2}=i^2\)

Từ đó suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\) (đpcm)

2 tháng 4 2018

Ta có:

\(a^2+ab+\dfrac{b^2}{3}=c^2+\dfrac{b^2}{3}+a^2+ac+c^2\)

\(\Rightarrow a^2+ab+\dfrac{b^2}{3}=2c^2+\dfrac{b^2}{3}+a^2+ac\)

\(\Rightarrow ab=2c^2+ac\)

\(\Rightarrow ab+ac=2ac+2c^2\)

\(\Rightarrow a\left(b+c\right)=2c\left(a+c\right)\)

\(\Rightarrow\dfrac{2c}{a}=\dfrac{b+c}{a+c}\left(đpcm\right)\)

14 tháng 3 2020

Bái Phục , Mong ngài hãy nhận con làm đệ tử .haha

19 tháng 1 2018

am-gm

19 tháng 1 2018

1) \(2VT=\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ac=2\left(ab+bc+ac\right)=2VP\)

\(VT\ge VP\)

2) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)