K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2022

\(B< -1\\ \Leftrightarrow\dfrac{x+5}{-2}< -1\\ \Rightarrow x+5>2\\ \Rightarrow x>-3\)

 

Để B<-1 thì x+5<2

=>x<-3

26 tháng 12 2016

a)

DK:tồn tại P \(\hept{\begin{cases}x\ne0\\x\ne-+6\\x\ne3\end{cases}}\)

\(P=\left(\frac{x}{\left(x-6\right)\left(x+6\right)}-\frac{x-6}{x\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\\ \)

\(P=\left(\frac{x^2-\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(P=\left(\frac{x^2-\left(x^2-12x+36\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(P=\left(\frac{12\left(x-3\right)}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x\left(x+6\right)}{2\left(x-3\right)}=\frac{6}{x-6}\)

b)6/(x-6)=1=> x-6=6=> x=12

c)x-6<0=> x<6

23 tháng 12 2018

dieu kien xac  dinh cua bieu thuc tren la x khac -+6,x khac 3

14 tháng 12 2018

a) P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)

Vậy P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{\left(x-5\right)\left(x+5\right)2}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

Có: \(P=0\)

\(\Rightarrow P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=0\Leftrightarrow x\left(x^2+4x-5\right)=0\Leftrightarrow x^2+4x-5=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(5x-5\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy \(P=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

14 tháng 4 2018

a)   ĐKXĐ:   \(x\ne\pm2\)

\(A=\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x-2x+4}{x^2-4}\)\(=\frac{x^2+4}{x^2-4}\)

b)   \(A>0\) \(\Rightarrow\)\(\frac{x^2+4}{x^2-4}>0\) 

Mà    \(x^2+4>0\)  \(\Rightarrow\)\(x^2-4>0\)

\(\Rightarrow\)\(x^2>4\)

Nếu   x   dương  thì      \(x>\sqrt{4}=2\)

Nếu   x  âm  thì   \(x< \sqrt{4}=2\)

2 tháng 5 2018

khocroikhocroikhocroihiha

2 tháng 5 2018

Câu 1 :

a) Rút gọn P :

\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)

\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)

\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)

\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)

3 tháng 1 2019

a) P xác định \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Leftrightarrow x\ne\left\{-5;0\right\}}\)

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{5\left(10-x\right)}{2x\left(x+5\right)}\)

\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+5x^2-x^2-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2\left(x+5\right)-x\left(x+5\right)}{2x\left(x+5\right)}\)

\(P=\frac{\left(x+5\right)\left(x^2-x\right)}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x-1\right)}{2x}\)

\(P=\frac{x-1}{2}\)

c) Để P = 0 thì \(x-1=0\Leftrightarrow x=1\)( thỏa mãn ĐKXĐ )

Để P = 1/4 thì \(\frac{x-1}{2}=\frac{1}{4}\)

\(\Leftrightarrow4\left(x-1\right)=2\)

\(\Leftrightarrow4x-4=2\)

\(\Leftrightarrow4x=6\)

\(\Leftrightarrow x=\frac{3}{2}\)( thỏa mãn ĐKXĐ )

d) Để P > 0 thì \(\frac{x-1}{2}>0\)

Mà 2 > 0, do đó để P > 0 thì \(x-1>0\Leftrightarrow x>1\)

Để P < 0 thì \(\frac{x-1}{2}< 0\)

Mà 2 > 0, do đó để P < 0 thì \(x-1< 0\Leftrightarrow x< 1\)

16 tháng 1 2018

sai đề

a: \(B=\left(\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x^2-x-12}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+3-1}{x+3}\)

\(=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x+3}\)

\(=\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)

b: Ta có: |2x+1|=5

=>2x+1=5 hoặc 2x+1=-5

=>2x=4 hoặc 2x=-6

=>x=2

Thay x=2 vào B, ta được:

\(B=\dfrac{3}{2-3}=\dfrac{3}{-1}=-3\)

d: Để B<0 thì x-3<0

hay x<3

 

23 tháng 1 2017

a) đk: \(x\ne\pm3\)

\(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)

\(=\left(-\frac{21}{9-x^2}-\frac{\left(x-4\right)\left(3+x\right)}{9-x^2}-\frac{\left(x-1\right)\left(3-x\right)}{9-x^2}\right):\left(\frac{x+2}{x+3}\right)\)

\(=\frac{-6-3x}{9-x^2}\cdot\frac{x+3}{x+2}=\frac{-3\left(x+2\right)}{9-x^2}\cdot\frac{x+3}{x+2}=\frac{-3}{3-x}\)

b) \(\left|2x+1\right|=5\Leftrightarrow\left[\begin{matrix}2x+1=-5\\2x+1=5\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-3\left(loại\right)\\x=2\end{matrix}\right.\)

\(B\left(2\right)=-\frac{3}{3-2}=-3\)

c) \(B=-\frac{3}{5}\Leftrightarrow-\frac{3}{3-x}=-\frac{3}{5}\Leftrightarrow3-x=5\Leftrightarrow x=-2\)

d) \(B< 0\Leftrightarrow-\frac{3}{3-x}< 0\Leftrightarrow3-x>0\Leftrightarrow x< 3\)

23 tháng 1 2017

a.B=\(\frac{3}{x-3}\)

b.|2x+1|=5

<=> \(\left[\begin{matrix}x=2\Rightarrow B=-3\\x=-3\Rightarrow B=-\frac{1}{2}\end{matrix}\right.\)

c.B=-3/5

\(\frac{3}{x-3}=-\frac{3}{5}\Leftrightarrow x=-3\)

d.\(\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\)(vi 3>0)

<=> x<3

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(B=\left(\dfrac{x}{x^2-4}-\dfrac{2}{x^2-2x}+\dfrac{1}{x+2}\right):\left(\dfrac{10-x^2}{x+2}+x-2\right)\)

\(=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-2x}{x\left(x-2\right)\left(x+2\right)}\right):\dfrac{10-x^2+x^2-4}{x+2}\)

\(=\dfrac{x^2-2x-4+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{2x^2-4x-4}{x\left(x-2\right)}\cdot\dfrac{1}{6}\)

\(=\dfrac{x^2-2x-2}{x\left(x-2\right)}\)

b: Để B=0 thì \(x^2-2x-2=0\)

hay \(x\in\left\{1+\sqrt{3};1-\sqrt{3}\right\}\)

 

13 tháng 7 2017

a) \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(B=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

( ĐKXĐ : \(x\ne0,x\ne-5\) )

\(B=\dfrac{\left(x^2+2x\right).x}{2x\left(x+5\right)}+\dfrac{\left(x-5\right).2\left(x+5\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(B=\dfrac{x^3+2x^2+2x^2+10x-10x-50+50-5x}{2x\left(x+5\right)}\)

\(B=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(B=\dfrac{x^3-x^2+5x^2-5x}{2x\left(x+5\right)}\)

\(B=\dfrac{x^2\left(x-1\right)+5x\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{\left(x-1\right)\left(x+5\right)x}{2x\left(x+5\right)}\)

\(B=\dfrac{x-1}{2}\)

Câu b và c dễ vì đã có kết quả rút gọn rồi :)

13 tháng 7 2017

rảnh k làm hộ mk nốt đi với ạ