Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P xác định \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Leftrightarrow x\ne\left\{-5;0\right\}}\)
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{5\left(10-x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+5x^2-x^2-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+5\right)-x\left(x+5\right)}{2x\left(x+5\right)}\)
\(P=\frac{\left(x+5\right)\left(x^2-x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x-1\right)}{2x}\)
\(P=\frac{x-1}{2}\)
c) Để P = 0 thì \(x-1=0\Leftrightarrow x=1\)( thỏa mãn ĐKXĐ )
Để P = 1/4 thì \(\frac{x-1}{2}=\frac{1}{4}\)
\(\Leftrightarrow4\left(x-1\right)=2\)
\(\Leftrightarrow4x-4=2\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\frac{3}{2}\)( thỏa mãn ĐKXĐ )
d) Để P > 0 thì \(\frac{x-1}{2}>0\)
Mà 2 > 0, do đó để P > 0 thì \(x-1>0\Leftrightarrow x>1\)
Để P < 0 thì \(\frac{x-1}{2}< 0\)
Mà 2 > 0, do đó để P < 0 thì \(x-1< 0\Leftrightarrow x< 1\)
a) P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)
Vậy P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{\left(x-5\right)\left(x+5\right)2}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
Có: \(P=0\)
\(\Rightarrow P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=0\Leftrightarrow x\left(x^2+4x-5\right)=0\Leftrightarrow x^2+4x-5=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy \(P=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
a) điều kiện xác định : \(x\ne\pm2;x\ne0\)
ta có : \(B=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2x-x^2}+\dfrac{1}{x+2}\right):\left(\dfrac{10-x^2}{x+2}+x-2\right)\)
\(\Leftrightarrow B=\left(\dfrac{x^2-2x-4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{10-x^2+x^2-4}{x+2}\right)\)
\(\Leftrightarrow B=\left(\dfrac{2x^2-4x-4}{x\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)=\dfrac{x^2-2x-2}{3x^2-6x}\)
b) để \(B=0\Leftrightarrow x^2-2x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{matrix}\right.\)
bn kiểm tra lại đề nha nếu như thế này phải sử dụng kiến thức lớp 10 đó bn
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b)
ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
Ta có: P=AB
\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)
\(\Leftrightarrow9\left(x+1\right)=6x\)
\(\Leftrightarrow9x-6x=-9\)
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)
b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{x+4}{6}\)
c) Để P = 0
\(\Leftrightarrow\frac{x+4}{6}=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Để P = 1
\(\Leftrightarrow\frac{x+4}{6}=1\)
\(\Leftrightarrow x+4=6\)
\(\Leftrightarrow x=2\)
d) Để P > 0
\(\Leftrightarrow\frac{x+4}{6}>0\)
\(\Leftrightarrow x+4>0\)(Vì 6>0)
\(\Leftrightarrow x>-4\)
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
\(C=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(B=\left(\dfrac{x}{x^2-4}-\dfrac{2}{x^2-2x}+\dfrac{1}{x+2}\right):\left(\dfrac{10-x^2}{x+2}+x-2\right)\)
\(=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{x\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-2x}{x\left(x-2\right)\left(x+2\right)}\right):\dfrac{10-x^2+x^2-4}{x+2}\)
\(=\dfrac{x^2-2x-4+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{2x^2-4x-4}{x\left(x-2\right)}\cdot\dfrac{1}{6}\)
\(=\dfrac{x^2-2x-2}{x\left(x-2\right)}\)
b: Để B=0 thì \(x^2-2x-2=0\)
hay \(x\in\left\{1+\sqrt{3};1-\sqrt{3}\right\}\)