Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
x={0 ;1;2 ;3 ;4 ;5 ;6 ;7........................}
ƯC(100;500) =100
suy ra x =100
BC(10;25) =50
suy ra x =50
tick nha
Ta dễ dàng chứng minh được công thức: \(111...1=\frac{10^n-1}{9}\)
(n số 1)
Áp dụng công thức trên ta có:
\(a+b+1=111...1.10^n+111...1+111...1.4+1\)
(n số 1) (n số 1) (n số 1)
\(=\frac{10^n-1}{9}.\left(10^n+1+4\right)+1\)
\(=\frac{10^n-1}{9}.\left(10^n+1+4+3\right)-\frac{10^n-1}{9}.3+1\)
\(=\frac{10^n-1}{9}.\left(10^n+8\right)-\frac{10^n-1}{3}+1\)
\(=111...1.3.333...36-333...3+1\)
(n số 1) (n - 1 số 3) (n số 3)
\(=333...3.333...36-333...32\)
(n số 3)(n - 1 số 3)(n - 1 số 3)
\(=333...3.333...34+333...3+333...3-333...32\)
(n số 3)(n - 1 số 3)(n số 3) (n số 3) (n - 1 số 3)
\(=333...34^2\), là số chính phương (đpcm)
(n - 1 số 3)
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
Ta có \(A=111111...1\)có 100 số 1
\(B=4444...4\)có 50 số 4
\(\Rightarrow\)\(A+B+1=111111...555555...56\)\(⋮2\)
\(\Rightarrow\)A+B+1 là số chính phương
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
ko vì số chính phương luôn luôn chia cho 3 và 4 có số dư là 2
Tìm x,y nguyên dương biết \(\frac{x+y}{x^2+y^2}=\frac{11}{65}\)