Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm được A = 24 5 và B = - 6 x - 4 với x > 0 và x ≠ 4 ta tìm được 0 < x < 1
Ta có M = - 1 + 2 x ∈ Z => x ∈ Ư(2) từ đó tìm được x=1
Cho biểu thức V=(1x√+2+1x√−2)x√+2x√ với x>0,x≠0.
a) Rút gọn biểu thức V.
b) Tìm giá trị x của để V=13.
a, V = 1 x + 2 + 1 x − 2 x + 2 x = x − 2 + x + 2 x + 2 x − 2 x + 2 x = 2 x − 2
b, V = 1 3 ⇔ 2 x − 2 = 1 3 ⇔ x − 2 = 6 ⇔ x = 64 ( t / m )
a: \(B=\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{4-x}\)
\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+2+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Khi x=16 thì \(B=\dfrac{2\cdot4+2}{\left(4-2\right)\left(4+2\right)}=\dfrac{10}{2\cdot6}=\dfrac{10}{12}=\dfrac{5}{6}\)
b: P=B/A
\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\dfrac{2}{\sqrt{x}+2}\)
\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
c: P<1
=>P-1<0
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
mà x nguyên
nên \(x\in\left\{0;1;2;3\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;1;2;3\right\}\)
a: Khi x=64 thì \(A=\dfrac{2}{8-2}=\dfrac{2}{6}=\dfrac{1}{3}\)
b: \(P=B:A\)
\(=\dfrac{3\sqrt{x}+\sqrt{x}-2-2\left(\sqrt{x}+2\right)}{x-4}:\dfrac{2}{\sqrt{x}-2}\)
\(=\dfrac{4\sqrt{x}-2-2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}\)
\(=\dfrac{2\sqrt{x}-6}{2\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
c: P<0
=>căn x-3<0
=>0<=x<9
mà x nguyên và x<>4
nên \(x\in\left\{0;1;2;3;5;6;7;8\right\}\)