Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\frac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}\)
b/ Thay x = 25 vào A ta được:
\(A=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-2}=\frac{5}{3}\)
c/ A = -1/3 \(\Rightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=-\frac{1}{3}\Rightarrow2-\sqrt{x}=3\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
Vậy x = 1/4
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
TL:
\(A=\frac{\sqrt{x+2}}{\sqrt{x-5}}\) mà x = 9
\(A=\frac{\sqrt{0+2}}{\sqrt{9-2}}\)
\(A=\frac{\sqrt{11}}{2}\)
b) chưa bt làm
\(x=9\Rightarrow\sqrt{x}=3\Rightarrow A=\frac{3+2}{3-5}=\frac{5}{-2}=-\frac{5}{2}\\ \)
\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}=\frac{3.\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}+\frac{20-2\sqrt{x}}{\left(x+\sqrt{5}\right).\left(x-\sqrt{5}\right)}\)
\(=\frac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}+5}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}=\frac{1}{\sqrt{x}-5}\)
\(A=B.\left|x-4\right|\Leftrightarrow\left|x-4\right|=A:B=\frac{\sqrt{x}+2}{\sqrt{x}-5}:\frac{1}{\sqrt{x}-5}=\sqrt{x}+2\)
\(\Rightarrow\left(x-4\right)^2=\left(\sqrt{x}+2\right)^2\Leftrightarrow x^2-8x+16=x+4\sqrt{x}+4\)
\(\Leftrightarrow x^2-9x-4\sqrt{x}+12=0\Leftrightarrow x.\left(x-9\right)-4.\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x.\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)-4.\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(x\sqrt{x}+3x-4\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(\left(x\sqrt{x}-x\right)+\left(4x-4\right)\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(x.\left(\sqrt{x}-1\right)+4.\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(\sqrt{x}-1\right).\left(x+4\sqrt{x}+4\right)=0\Leftrightarrow\left(\sqrt{x}-3\right).\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-3=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}}\)(Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\left(\sqrt{x}+2\right)^2\ge4>0\))
d, \(\frac{3x}{x+2}=\frac{3\left(x+2\right)-6}{x+2}=3-\frac{6}{x+2}\)
\(\Rightarrow x+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x + 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -4 |
e, \(C=\frac{A}{B}>0\Rightarrow\frac{3x}{x+2}.\frac{x+2}{x^2+2}=\frac{3x}{x^2+2}>0\)
\(\Rightarrow3x>0\Rightarrow x>0\)vì \(x^2+2>0\)
Kết hợp với đk vậy \(x>0;x\ne\pm2\)
f, vừa hỏi thầy, nên quay lại làm nốt :>
f, Để \(\left|C\right|>C\Rightarrow C< 0\)vì \(\left|C\right|\ge0\)
\(\Rightarrow C=\frac{3x}{x^2+2}< 0\Rightarrow3x< 0\Leftrightarrow x< 0\)
học lớp 9 chưa mà đòi đăng ? :))
a) Ta có : \(A=\frac{x+5\sqrt{x}}{x-25}=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}}{\sqrt{x}-5}\)
Để A nhận giá trị = 0 thì \(\sqrt{x}=0\)<=> x = 0 ( tmđk )
Vậy với x = 0 thì A = 0
b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
c) P = B : A = \(\frac{\frac{\sqrt{x}}{\sqrt{x}+3}}{\frac{\sqrt{x}}{\sqrt{x}-5}}=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{\sqrt{x}}{\sqrt{x}+3}\times\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
Xét hiệu P - 1 ta có :
\(\frac{\sqrt{x}-5}{\sqrt{x}+3}-1=\frac{\sqrt{x}-5}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\frac{-8}{\sqrt{x}+3}\)
Vì \(\hept{\begin{cases}-8< 0\\\sqrt{x}+3>0\end{cases}}\Rightarrow\frac{-8}{\sqrt{x}+3}< 0\)hay P - 1 < 0
=> P < 1
a) \(A=0\Rightarrow\frac{x+5\sqrt{x}}{x-25}=0\Rightarrow x+5\sqrt{x}=0\Leftrightarrow x=0\)(thỏa mãn).
b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)
\(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}+3}\)
c) \(P=B\div A=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}< 1\)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Để A > 0
=> \(\frac{\sqrt{x}-1}{\sqrt{x}}>0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>1\\\sqrt{x}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>0\end{cases}}\Leftrightarrow x>1\)
2. \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}< 0\end{cases}}\)( dễ thấy trường hợp này không xảy ra :> )
Vậy với x > 1 thì A > 0