Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Baif 2:a:
Co:A=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2
A=1+3/n-2
=>A thuoc Z <=>3/n-2 thuoc Z <=>3 chia het cho n-2
=>n-2 thuoc U(3) <=>n-2 thuoc (-1;1;-3;3)
<=>n thuoc (1;3;-1;5)
b;
Co:A=1+3/n-2
Ta co A lon nhat <=>n-2 la so nguyen duong nho nhat
<=>n-2=1<=>n=3
Khi do A=1+3/3-2=4
Vay GTLN cua A=4 tai n=3
a) \(A=\frac{3n+11}{n-2}\left(n\inℤ\right)\)
Để A là phân số thì n-2\(\ne\)0
<=> n\(\ne\)2
Vậy n\(\ne\)2 thì A là phân số
b) \(A=\frac{3n+11}{n-2}\left(n\ne2\right)\)
Để A có giá trị nguyên thì \(\frac{3n+11}{n-2}\)đạt giá trị nguyên
=> 3n+11\(⋮\)n-2
Ta có 3n+11=3(n-2)+17
Thấy n-2\(⋮n-2\Rightarrow3\left(n-2\right)⋮7\)
Vậy để 3(n-2)+17 \(⋮n-2\Rightarrow17⋮n-2\)
Có \(n\inℤ\Rightarrow n-2\inℤ\Rightarrow n-2\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
Đối chiếu điều kiện ta được n={-15;1;3;19}
Vậy n={-15;1;3;19} thì A đạt giá trị nguyên
Đề bài là số nguyên n hay x thế?
a) A là phân số khi \(n-5\ne0\)
\(\Rightarrow n\ne-5\)
Vậy n là số nguyên bất kì khác -5.
b) Để A là số nguyên thì \(n+2⋮n-5\)
\(\Rightarrow n-5+7⋮n-5\)
Vì \(n-5⋮n-5\)
\(\Rightarrow7⋮n-5\)
\(\Rightarrow n-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
...
Đến đây bạn tự lập bảng xét các giá trị của n nhé!
Học tốt!
#Huyền#
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) A = 6n+9-13 / 2n+3 = 3 - 13/2n+3
để A rút gọn được thì 13 phải chia hết cho 2n+3
Ư(13) thuộc Z là -13,-1,1,13
<=> n có thể là -8,-2,-1,5
câu a ko bít đúng ko, vì cái từ "rút gọn được" hơi khó hỉu, ko biết bạn muốn rút thành phân số tối giản hay theo cách của mình là rút thành số nguyên. Mình giải tiếp câu b đây, câu này dễ, cho mìnk 4,5 * nká
b) để A nhỏ nhất, A phải là số âm
=> 6n-4 là số âm, 2n+3 là số dương (TH1)
hoặc 6n-4 là số dương, 2n+3 là số âm (TH2)
*TH1:
6n -4 < 0 <=> 6n < 4 <=> n < 4/6
2n+3 > 0 <=> 2n > -3 <=> n > -3/2
mà n thuộc Z
=> n= 0 hoặc n=-1
*TH2:
6n -4 > 0 <=> 6n > 4 <=> n > 4/6
2n+3 < 0 <=> 2n < -3 <=> n < -3/2
=> mâu thuẫn
vậy ta xét tiếp A nhỏ nhất khi n = 0 hoặc n = -1.
<Tới đây thì bạn tự giải nha>
tớ giải được A nhỏ nhất (A=-10) khi n = -1
Bài giải
a, Ta có : \(B=\frac{3n+18}{n-3}=\frac{3\left(n-3\right)+9+18}{n-3}=\frac{3\left(n-3\right)+27}{n-3}=\frac{3\left(n-3\right)}{n-3}+\frac{27}{n-3}=3+\frac{27}{n-3}\)
B là một số nguyên khi \(3n+18\text{ }⋮\text{ }n-3\) \(\Rightarrow\text{ }27\text{ }⋮\text{ }n-3\text{ }\Rightarrow\text{ }n-3\inƯ\left(27\right)=\left\{\pm1\text{ ; }\pm3\text{ ; }\pm9\text{ ; }\pm27\right\}\)
Ta có bảng :
\(\Rightarrow\text{ }n\in\left\{-24\text{ ; }-6\text{ ; }0\text{ ; }2\text{ ; }30\text{ ; }12\text{ ; }6\text{ ; }4\right\}\)
b, \(B=3+\frac{27}{n-3}\) đạt GTLN khi \(\frac{27}{n-3}\) lớn nhất \(\Rightarrow\text{ }n-3\) bé nhất ( n khác 3 )
Xét 2 trường hợp :
n < 3 => n - 3 < 0 => B < 0
n > 3 => n - 3 > 0 => B > 0
Mà ta đang tìm GTLN của B , n - 3 đạt GTNN và n - 3 > 0 => n - 3 = 1 => n = 4
Vậy GTLN của B = 3 + 27 = 30 khi n = 4