K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Baif 2:a:

Co:A=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2

A=1+3/n-2

=>A thuoc Z <=>3/n-2 thuoc Z <=>3 chia het cho n-2

=>n-2 thuoc U(3) <=>n-2 thuoc (-1;1;-3;3)

<=>n thuoc (1;3;-1;5)

b;

Co:A=1+3/n-2

Ta co A lon nhat <=>n-2 la so nguyen duong nho nhat

<=>n-2=1<=>n=3

Khi do A=1+3/3-2=4

Vay GTLN cua A=4 tai n=3

24 tháng 4 2015

n=0;2;4

A lớn nhất <=> n-1 là số nguyên dương nhỏ nhất

                 <=> n-1 = 1

                 <=> n = 2

Vậy GTLN của A = (n+1)/(n-1) = 2+1/2-1 = 3 tại n = 2

 

8 tháng 5 2020

a) \(A=\frac{3n+11}{n-2}\left(n\inℤ\right)\)

Để A là phân số thì n-2\(\ne\)0

<=> n\(\ne\)2

Vậy n\(\ne\)2 thì A là phân số

b) \(A=\frac{3n+11}{n-2}\left(n\ne2\right)\)

Để A có giá trị nguyên thì \(\frac{3n+11}{n-2}\)đạt giá trị nguyên

=> 3n+11\(⋮\)n-2

Ta có 3n+11=3(n-2)+17

Thấy n-2\(⋮n-2\Rightarrow3\left(n-2\right)⋮7\)

Vậy để 3(n-2)+17 \(⋮n-2\Rightarrow17⋮n-2\)

Có \(n\inℤ\Rightarrow n-2\inℤ\Rightarrow n-2\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)

Ta có bảng

n-2-17-1117
n-151319

Đối chiếu điều kiện ta được n={-15;1;3;19}

Vậy n={-15;1;3;19} thì A đạt giá trị nguyên

17 tháng 3 2017

a) Ta có : A= (n+1)/(n-2) = (n-2 +3)/(n -2) = 1+ 3/(n-2)    Vậy để A nguyên thì (n-2) thuộc ước 3 ( +-1; +-3 )  <=> N-2 =1  <=> n =3                                                                                                                                                                        <=> N-2 =-1  <=> n= 1                                                                                                                                                                          <=> N-2 =3  <=> n= 5                                                                                                                                                                   <=> N-2 =-3  <=> n= -1

17 tháng 3 2017

b) ta có : A max => (n-2) min mà (n-2) thuộc Z =>(n-2)>0 <=> (n-2 ) =1 <=> n=3

26 tháng 2 2020

                                                        Bài giải

a, Ta có : \(B=\frac{3n+18}{n-3}=\frac{3\left(n-3\right)+9+18}{n-3}=\frac{3\left(n-3\right)+27}{n-3}=\frac{3\left(n-3\right)}{n-3}+\frac{27}{n-3}=3+\frac{27}{n-3}\)

B là một số nguyên khi \(3n+18\text{ }⋮\text{ }n-3\) \(\Rightarrow\text{ }27\text{ }⋮\text{ }n-3\text{ }\Rightarrow\text{ }n-3\inƯ\left(27\right)=\left\{\pm1\text{ ; }\pm3\text{ ; }\pm9\text{ ; }\pm27\right\}\)

Ta có bảng :

n - 3 - 27 - 9 - 3 - 1 27 9     3 1
n - 24 - 6 0 2 30 12   6 4

\(\Rightarrow\text{ }n\in\left\{-24\text{ ; }-6\text{ ; }0\text{ ; }2\text{ ; }30\text{ ; }12\text{ ; }6\text{ ; }4\right\}\)

b, \(B=3+\frac{27}{n-3}\) đạt GTLN khi \(\frac{27}{n-3}\) lớn nhất \(\Rightarrow\text{ }n-3\) bé nhất ( n khác 3 )

Xét 2 trường hợp :

n < 3 => n - 3 < 0 => B < 0

n > 3 => n - 3 > 0 => B > 0

Mà ta đang tìm GTLN của B , n - 3 đạt GTNN và n - 3 > 0 => n - 3 = 1 => n = 4

Vậy GTLN của B = 3 + 27 = 30 khi n = 4

29 tháng 8 2019

Bài 1 :

\(-8=\frac{-8}{1}=\frac{-16}{2}=\frac{-24}{3}=\frac{-32}{4}=\frac{-40}{5}\)

\(-2=\frac{-2}{1}=\frac{-4}{2}=\frac{-6}{3}=\frac{-8}{4}=\frac{-10}{5}\)

\(3=\frac{3}{1}=\frac{6}{2}=\frac{9}{3}=\frac{12}{4}=\frac{15}{5}\)

  

29 tháng 8 2019

Bài 2 :

 a)  Để A là phân số thì :

  \(n-6\ne0\Rightarrow n\ne6\)

b)\(A=\frac{4}{0-6}=\frac{4}{-6}\)

\(A=\frac{4}{7-6}=4\)

\(A=\frac{4}{-12-6}=\frac{-2}{9}\)

Bài 3 : [ Tương tự bài 2 ]

Bài 4 : [ Suy nghĩ thì ra ]

               [ Hoq chắc - có gì sai thông cảm ]

2 tháng 3 2019

a)Gọi A=n+1/n+2

để A là số nguyên thì n+1 chia hết cho n - 2

 ta có : n+1= n-2+3 chia het cho n-2

mà n-2 chia hết cho n-2 nên 3 chia hết cho n-2

=> n-2 thuộc Ư(3)={-3;3;-1;1}

=>n thuộc { 3;1;-1;5}

vậy n thuộc {3;-1;1;5}

) ta có : A max

=> (n-2) min mà (n-2) thuộc Z

=>(n-2)>0

<=> (n-2 ) =1

<=> n=3

3 tháng 3 2019

Xin bạn Nguyễn Công Tỉnh nhìn kĩ đề n + 2 nhé. mk xin giải lại. Mk ko có ý coi thường nhé.

Đặt \(A=\frac{n+1}{n+2}\)

Để \(A\inℤ\) thì \(\left(n+1\right)⋮\left(n+2\right)\)

\(\Leftrightarrow\left(n+2-1\right)⋮\left(n+2\right)\)

Vì \(\left(n+2\right)⋮\left(n+2\right)\) nên \(1⋮\left(n+2\right)\)

\(\Rightarrow\left(n+2\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(TH1:n+2=-1\)

\(\Leftrightarrow n=-1-2\)

\(\Leftrightarrow n=-3\)

\(TH2:n+2=1\)

\(\Leftrightarrow n=1-2\)

\(\Leftrightarrow n=-1\)

Vậy \(n\in\left\{-3;-1\right\}\) thì \(\frac{n+1}{n+2}\) là số nguyên.