Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=1+3^2+3^4+3^6+...+3^{2002}\)
\(3^2.S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(1+3^2+3^4+3^6+...+3^{2002}\right)\)
\(8S=3^{2004}-1\)
\(S=\frac{3^{2004}-1}{8}\)
b) \(S=1+3^2+3^4+3^6+...+3^{2002}\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+2^{1998}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{1998}\right)\)
\(=91\left(1+3^6+...+3^{1998}\right)\)
\(=7.13\left(1+3^6+...+3^{1998}\right)\)
Vậy S chia hết cho 7
a)\(S=\left(3^0+3\right)+\left(3^2+3^3+3^4\right)+...\left(2^{48}+2^{49}+2^{50}\right)\)
\(S=4+3^2\left(1+3+3^2\right)+...+3^{48}\left(1+3+3^2\right)\)
\(S=4+3^2\cdot13+...+3^{48}\left(13\right)\)
\(S=4+13\left(3^2+3^{48}\right)\)Vì 4 ko chia hết cho 13 nên biểu thức trên ko chia hết cho 13(ĐPCM)
a) Nhân S với 32 bằng S nhân với 9 ta được : 9S
9S = 32 + 34 + 36 + ... + 32002 + 32004
\(\Rightarrow\)9S - S = ( 32 + 34 + 36 + ... + 32004 ) - ( 30 + 32 + 36 + ... + 32002 )
\(\Rightarrow\)8S = 32004 - 1
\(\Rightarrow\)S = \(\frac{\left(3^{2004}-1\right)}{8}\)
b) Ta có s là số nguyên nê phài chứng minh 32004 - 1 chia hết cho 7
Ta có : 32004 - 1 = ( 36 )334 - 1 = ( 36 ) . M = 728 . M = 7 . 104 . M
\(\Rightarrow\)32004 chia hết cho 7. Mặt khác ( 7;8 ) = 1
\(\Rightarrow\)S chia hết cho 7
giải dài lắm bạn ơi,mik làm câu b thui nhé
S = 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) x 3
Sx 3 = 3 + 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 203 + 3 ^ 204
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) + 3 ^ 204 - 1
S x3 = S + 3 ^ 204 - 1
S x 2 = 3 ^ 204 - 1 ( cũng bớt cả 2 vế đi S )
S = 3 ^ 204 - 1 : 2
S = 3 ^ 4 x 51 - 1 : 2
S = (3^4) ^ 51 - 1 : 2
S = 81 ^ 51 - 1 : 2
Vì 81 ^ 51 luôn có t/c = 1 ( do số có t/c =1 khi nâng lên bất kì lũy thừa nào đều có t/c = 1)
=> 81 ^ 51 - 1 co t/c = 0
=> 81 ^ 51 - 1 : 2 co t/c = 5
Hay S có t/c = 5
Vay S co t/c =5
Ung ho nha
Sorry nha Mình chỉ giải được phần b thôi à(Nhớ tích cho mình đó)
b) S=30+31+32+33+.......+339
=(30+31+32+33)+.......+(336+337+338+339)
=30.(1+31+32+33)+.......+336.(1+31+32+33)
=30.40+........+336.40
Suy ra S chia hết cho 40
câu a)
\(S=3^0+3^2+3^4+...+3^{2002}\\ \Rightarrow9S=3^2+3^4+3^6+...+3^{2004}\)
từ đó ta suy ra : \(9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
vậy \(8S=3^{2004}-1\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
b) các số mũ lần lượt như sau : \(0;2;4;6;8;...;2002\)
ta có các dãy số hạng của những số trên là :
\(\left(2002-0\right)\div2+1=1002\) (số)
số nhóm mà chúng ta có thể ghép được là :
\(\dfrac{1002}{3}=334\) \(\left(nhóm\right)\)
\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\\ \Rightarrow S=\left(3^0+3^2+3^4\right)+3^6\times\left(3^0+3^2+3^4\right)+...+3^{1998}\times\left(3^0+3^2+3^4\right)\\ \Rightarrow S=1\times91+3^6\times91+...+3^{1998}\times91=\left(1+3^6+...+3^{1998}\right)\times91\)TA CÓ 91 CHIA HẾT CHO 7 CHO NÊN TA KẾT LUẬN RẰNG S ⋮ 7
S = 30 + 32 + 34 +.....+ 32002
32S = 32 + 34+.....+32002 + 32004
9S - S = 32004 - 1
8S = 32004 - 1
S = (32004 - 1)/8
S = 30 + 32 + 34 +....+32002
Xét dãy số : 0; 2; 4; ....;2002
Dãy số trên có số hạng là : (2002 - 0) : 2 + 1 = 1002 ⋮ 2
Nhóm 2 số hạng liên tiếp của tổng S thành 1 nhóm ta được
S = (30 + 32) +( 32 + 34) +....+ ( 32000+32002)
S = 28 + 32.( 1+32) +....+ 32000.( 1+32)
S = 28 + 32. 28 +....+ 32000.28
S = 28 .( 1 + 32+....+32000)
vì 28 ⋮ 7 ⇒ 28.( 1 + 32 +.....+ 32000) ⋮ 7
⇒ A = 30 + 32 + 34 +....+32002 ⋮ 7 (đpcm)
a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)
S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)
S=129+2*3+2^3*(1+2)+2^5*(1+2)
S=3*43+2*3+2^3*3+2^5*3
S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3
c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004
S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]
S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )
S = 2*501
S = 1002
a/ Ta có :
\(S=1+3+3^2+........+3^{2017}\)
\(\Leftrightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+......+\left(3^{2016}+3^{2017}\right)\)
\(\Leftrightarrow S=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{2016}\left(1+3\right)\)
\(\Leftrightarrow S=1.4+3^2.4+........+3^{2016}.4\)
\(\Leftrightarrow S=4\left(1+3^2+......+3^{2016}\right)⋮4\left(đpcm\right)\)
b/ \(S=1+3+..........+3^{2017}\)
\(\Leftrightarrow3S=3+3^2+.........+3^{2017}+3^{2018}\)
\(\Leftrightarrow3S-S=\left(3+3^2+..........+3^{2018}\right)-\left(1+3+.....+3^{2017}\right)\)
\(\Leftrightarrow2S=3^{2018}-1\)
\(\Leftrightarrow S=\dfrac{3^{2018}-1}{2}\)