Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+5+5^2+...+5^2017
(=)S=(1+5+5^2)+...+(5^2015+5^2016+5^2017)
(=)S=1(1+5+5^2)+...+5^2015(1+5+5^2)
(=)S=1.31+...+5^2015.31
(=)S=(1+...+5^2015).31 chia het cho 31
Vay S chia het cho 31
3^3027 >4S
S = 5 + 52 + 53 + 54 + .......... + 599
a) S = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 597 + 598 + 599 )
= 5. ( 1 + 5 + 52 ) + 54 . ( 1 + 5 + 52 ) + .... + 597 . ( 1 + 5 + 52 )
= ( 1 + 5 + 52 ). ( 5 + 54 + .. + 597 )
= 31 . ( 5 + 54 + .... + 597 ) chia hết cho 31 ( đpcm )
c ) 5S = 52 + 53 + .. + 5100
=> 5S - S = 4S = 5100 + 599 + ........ + 53 + 52 - 5 - 52 - 53 - ..... - 599
= 5100 - 5
25x - 5 = 4S
=> 25x - 5 = 5100 - 5
=> 25x = 5100
=> 25x = ( 52 )50
=> 25x = 2550
=> x = 50
Vậy x = 50
Câu b quên cách làm rồi
a) S=5+52+53+54+...+599
=(5+52+53)+(54+55+56)+...+(597+598+599)
=5(1+5+52)+54(1+5+52)+...+597(1+5+52)
=5.31+54.31+...+597.31
=31(5+54+...+597)⋮31(đpcm)
b) S=5+52+53+54+...+599
=5+(52+53)+(54+55)+...+(598+599)
=5+5(5+52)+53(5+52)+...+597(5+52)
=5+5.30+53.30+...+597.30
=5+30.(5+53+...+597)
Mà 5⋮̸30 nên S⋮̸30(đpcm)
c) Ta có: 5S=52+53+54+55+...+5100
5S−S=(52+53+54+55+...+5100)−(5+52+53+54+...+599)
4S=5100−5
⇒25x−5=5100−5
⇒25x=5100
⇒25x=2550
⇒x=50
a là x và y thuộc nhóm rỗng
b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009
c là vì 4S+1 là 5^2016 chia hết cho 5^2016
vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S
a) \(S=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow5S=5^2+5^3+5^4+...+5^{101}\)
\(\Rightarrow5S-S=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(\Rightarrow4S=5^{101}-5\)
\(\Rightarrow S=\frac{5^{101}-5}{4}\)
b) \(4S+5=5^x\)
\(\Rightarrow5^{101}-5+5=5^x\)
\(\Rightarrow5^{101}=5^x\)
\(\Rightarrow x=101\)
Vậy x = 101
c) \(S=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow S=\left(5+25\right)+5^2.\left(5+5^2\right)+...+5^{98}.\left(5+5^2\right)\)
\(\Rightarrow S=30+5^2.30+...+5^{98}.30\)
\(\Rightarrow S=\left(1+5^2+...+5^{98}\right).30⋮30\)
\(\Rightarrow S⋮30\left(đpcm\right)\)
S=17+5^2(1+5+5^2)+...+5^2008(1+5+5^2)
=17+5^2.31+...+5^2008.31
=17+ 31(5^2+...+5^2008) chia cho 31 dư 17
Nhớ k mình nhé!!!!!
5S=5(1+5+52+...+52017)
5S=5+52+...+52018
5S-S=(5+52+...+52018)-(1+5+52+...+52017)
4S=52018-5
tính xong 4S rồi đó đến đây bạn thích làm thế nào thì làm
5S=5(1+5+52+...+52017)
5S=5+52+...+52018
5S-S=(5+52+...+52018)-(1+5+52+...+52017)
4S=52018-5