Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)
\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{x-4}{\left(x-4\right)\left(x+4\right)}\right)\cdot\frac{x^2-2x-8}{1}\)
\(P=\left(\frac{x+4}{\left(x+4\right)\left(x-4\right)}\right)\cdot x^2-2x-8\)
\(P=\frac{1}{x-4}\cdot x^2-2x-8\)
P\(P=\frac{x^2+2x-4x+8}{x-4}\)
\(P=\frac{x\left(x+2\right)-4\left(x+2\right)}{x-4}\)
\(P=\frac{\left(x-4\right)\left(x+2\right)}{x-4}\)
\(P=x+2\)
2 ,\(x^2-9x+20=0\)
\(\Rightarrow x^2-4x-5x+20=0\)
\(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
\(\orbr{\begin{cases}x=5\Rightarrow\\x=4\Rightarrow\end{cases}}\orbr{\begin{cases}P=7\\P=6\end{cases}}\)
a/ ĐKXĐ ....
A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
=\(\frac{1}{x}-\frac{1}{x-5}\)
=\(-\frac{5}{x^2-5x}\)
b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)
<=> x=-1, thay vào tính nốt
1. A = -4 phần x+2
2. 2x^2 + x = 0 => x = 0 hoặc x = -1/2
Với x = 0 thì A = -2
Với x = -1/2 thì A = -8/3
3. A = 1/2 => -4 phần x + 2 = 1/2
<=> -8 = x + 2
<=> x = -10
4. A nguyên dương => A > 0
=> -4 phần x + 2 > 0
Do -4 < 0 nên -4 phần x + 2 > 0 khi x + 2 < 0
=> x < -2
Ta có :
\(P=\left(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\right):\dfrac{1}{x^2-2x-8}\)
\(P=\left(\dfrac{8+x-4}{\left(x+4\right)\left(x-4\right)}\right):\dfrac{1}{\left(x+2\right)\left(x-4\right)}\)
\(P=\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}:\dfrac{1}{\left(x+2\right)\left(x-4\right)}\)
\(P=\dfrac{1}{x-4}.\left(x+2\right)\left(x-4\right)\)
\(P=\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x-4\right)}\)
\(P=x+2\)
2 . Ta có :
\(x^2-9x+20=0\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Thay \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) vào biểu thức \(P=x+2\) ta được :
\(\left[{}\begin{matrix}4+2=6\\5+2=7\end{matrix}\right.\)
Kết luận __________________________________
ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}x^2-16\ne0\\x+4\ne0\\x^2-2x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+4\right)\ne0\\x\ne-4\\\left(x-4\right)\left(x+2\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne-2\end{matrix}\right.\)
\(P=\left(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\right):\dfrac{1}{x^2-2x-8}\) \(=\left(\dfrac{8}{\left(x-4\right)\left(x+4\right)}+\dfrac{1}{x+4}\right).\left(x^2-2x-8\right)\) \(=\dfrac{8+x-4}{\left(x-4\right)\left(x+4\right)}.\left(x^2-4x+2x-8\right)\) \(=\dfrac{x+4}{\left(x-4\right)\left(x+4\right)}.\left(x-4\right)\left(x+2\right)\) \(=x+2\) + Tính giá trị của P tại x2 - 9x + 20 = 0 \(x^2-9x+20=0\) \(\Rightarrow x^2-4x-5x+20=0\) \(\Rightarrow\left(x^2-4x\right)-\left(5x-20\right)=0\) \(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\left(kot/m\right)\\x=5\left(t/m\right)\end{matrix}\right.\) Thay x = 5 vào biểu thức P ,có : \(5+2=7\) Vậy tại x= 5 giá trị của P là 7
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
a) thay x = -3 vào biểu thức, ta có:
\(A=\frac{\left(-3\right)^2+2.\left(-3\right)}{\left(-3\right)+1}=-\frac{3}{2}\)
b) M = A.B
\(M=\left(-\frac{3}{2}\right)\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)\)
\(M=-\frac{3\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{4-x^2}\right)}{2}\)
\(M=-\frac{3.\frac{8}{x+2}}{2}\)
\(M=-\frac{\frac{24}{x+2}}{2}\)
\(M=-\frac{24}{2\left(x+2\right)}\)
\(M=-\frac{12}{x+2}\)
a) \(ĐKXĐ:x\ne\pm4;x\ne-2\)
\(P=\left(\frac{8}{x^2-16}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)
\(\Leftrightarrow P=\left(\frac{8}{\left(x-4\right)\left(x+4\right)}+\frac{1}{x+4}\right):\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{8+x-4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{x+4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{1}{x-4}.\left(x-4\right)\left(x+2\right)\)
\(\Leftrightarrow P=\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)}\)
\(P=x+2\)
b) Ta có :
\(x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}P=x+2=5+2=7\\P=x+2=4+2=6\end{cases}}\)
Vậy \(P\in\left\{7;6\right\}\)