Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne\pm4;x\ne-2\)
\(P=\left(\frac{8}{x^2-16}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)
\(\Leftrightarrow P=\left(\frac{8}{\left(x-4\right)\left(x+4\right)}+\frac{1}{x+4}\right):\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{8+x-4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{x+4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{1}{x-4}.\left(x-4\right)\left(x+2\right)\)
\(\Leftrightarrow P=\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)}\)
\(P=x+2\)
b) Ta có :
\(x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}P=x+2=5+2=7\\P=x+2=4+2=6\end{cases}}\)
Vậy \(P\in\left\{7;6\right\}\)
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
\(ĐKXĐ:\)\(x\ne\left\{0;1;2;3;4;5\right\}\)
\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)
\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}\)
\(=\frac{1}{x-5}-\frac{1}{x}\)
\(=\frac{5}{x\left(x-5\right)}\)
Ta có: \(x^3-x^2+2=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-2x+2\right)=0\)
Xét: \(x^2-2x+2=\left(x-1\right)^2+1\)\(>0\)
\(\Rightarrow\)\(x+1=0\)
\(\Leftrightarrow\)\(x=-1\)(t/m)
Vậy tại \(x=-1\) thì:
\(P=\frac{5}{-1\left(-1-5\right)}=\frac{5}{6}\)
ĐKXĐ \(x\ne0,1,2,3,4,5\)
\(P=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
\(P=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
\(P=\frac{1}{x-5}-\frac{1}{x}\)
\(P=\frac{5}{x\left(x-5\right)}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)
a) ĐKXĐ : \(x\ne\pm2\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{x^2-4}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x-23\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x^2-17x-46\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x-\left(3x^2-17x-46\right)-40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x-3x^2+17x+46-40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{2x^2+7x+6}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+3}{x-2}\)
b) x2 - 1 = 0 <=> x2 = 1 <=> x = ±1
Với x = 1
\(B=\frac{2\cdot1+3}{1-2}=-5\)
Với x = -1
\(B=\frac{2\cdot\left(-1\right)+3}{\left(-1\right)-2}=-\frac{1}{3}\)
Bài 1 :
a, \(\left(a-2\right)^2-b^2=\left(a-2-b\right)\left(a-2+b\right)\)
b, \(2a^3-54b^3=2\left(a^3-27b^3\right)=2\left(a-3b\right)\left(a^2+3ab+9b\right)\)
Bài 2 : tự kết luận nhé, ngại mà lười :(
a, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{4x-3}{5}-\frac{5x-4}{3}=\frac{6x-2}{7}+3\)
\(\Leftrightarrow\frac{12x-9-25x+20}{15}=\frac{6x-2+21}{7}\)
\(\Leftrightarrow\frac{-13x-29}{15}=\frac{6x+19}{7}\Rightarrow-91x-203=90x+285\)
\(\Leftrightarrow181x=-488\Leftrightarrow x=-\frac{488}{181}\)
b, \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4x+8+9\left(2x-1\right)}{12}-\frac{10x-6}{12}=\frac{12x+5}{12}\)
\(\Rightarrow4x+8+18x-9-10x+6=12x+5\)
\(\Leftrightarrow12x+5=12x+5\Leftrightarrow0x=0\)
Vậy phương trình có vô số nghiệm
c, \(\left|2x-3\right|=4\)
Với \(x\ge\frac{3}{2}\)pt có dạng : \(2x-3=4\Leftrightarrow x=\frac{7}{2}\)
Với \(x< \frac{3}{2}\)pt có dạng : \(2x-3=-4\Leftrightarrow x=-\frac{1}{2}\)
d, \(\left|3x-1\right|-x=2\Leftrightarrow\left|3x-1\right|=x+2\)
Với \(x\ge\frac{1}{3}\)pt có dạng : \(3x-1=x+2\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Với \(x< \frac{1}{3}\)pt có dạng : \(3x-1=-x-2\Leftrightarrow4x=-1\Leftrightarrow x=-\frac{1}{4}\)
\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)
Làm nốt
2/
\(T=8x^2-4x+\frac{1}{4x^2}+15\)
\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}-2\right)+16\)
\(=\left(2x-1\right)^2+\left(\frac{4x^2-1}{2x}\right)^2+16\ge16\)
a/ ĐKXĐ ....
A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)
=\(\frac{1}{x}-\frac{1}{x-5}\)
=\(-\frac{5}{x^2-5x}\)
b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)
<=> x=-1, thay vào tính nốt