Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne\pm4;x\ne-2\)
\(P=\left(\frac{8}{x^2-16}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)
\(\Leftrightarrow P=\left(\frac{8}{\left(x-4\right)\left(x+4\right)}+\frac{1}{x+4}\right):\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{8+x-4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{x+4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)
\(\Leftrightarrow P=\frac{1}{x-4}.\left(x-4\right)\left(x+2\right)\)
\(\Leftrightarrow P=\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)}\)
\(P=x+2\)
b) Ta có :
\(x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}P=x+2=5+2=7\\P=x+2=4+2=6\end{cases}}\)
Vậy \(P\in\left\{7;6\right\}\)
\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)
\(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)
\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)
Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên
\(\Leftrightarrow10⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)
\(\Rightarrow x=-1;0;-3;2\)
Vậy.......................
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
a) 2x + 1 = 5 - 5x
=> 2x + 5x = 5 - 1
=> 7x = 4
=> x = 4/7
b) 3x - 2 = 2x + 5
=> 3x - 2x = 5 + 2
=> x = 7
c) 7(x - 2) = 5(3x + 1)
=> 7x - 14 = 15x + 5
=> 7x - 15x = 5 + 14
=> - 8x = 19
=> x = - 19/8
d) 2x + 5 = 20 - 3x
=> 2x + 3x = 20 - 5
=> 5x = 15
=> x = 3
e) x - 3 = 18 - 5x
=> x + 5x = 18 + 3
=> 6x = 21
=> x = 21/6 = 7/2
Dạng 1: Rút gọn
Bài 1
a) Rút gọn
P= (\(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\)):\(\dfrac{1}{x^2-2x-8}\)
= (\(\dfrac{8}{\left(x+4\right)\left(x-4\right)}+\dfrac{x-4}{\left(x+4\right)\left(x-4\right)}\)):\(\dfrac{1}{\left(x-4\right)\left(x+2\right)}\)
= \(\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}:\dfrac{1}{\left(x-4\right)\left(x+2\right)}\)
= \(\dfrac{1}{x-4}.\left(x-4\right)\left(x+2\right)\)
= x+2
Bài 2
a) Rút gọn
D=(\(\dfrac{1}{x-1}-\dfrac{x}{1-x^3}.\dfrac{x^2+x+1}{x+1}\)):\(\dfrac{2x+1}{x^2+x+1}\)
= (\(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)):\(\dfrac{2x+1}{x^2+x+1}\)
= \(\dfrac{2x+1}{\left(x+1\right)\left(x-1\right)}\).\(\dfrac{x^2+x+1}{2x+1}\)
= \(\dfrac{x^2+x+1}{\left(x+1\right)\left(x-1\right)}\)
b) Tìm x∈Z để D∈Z
D=\(\dfrac{x^2+x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2+x+1}{x^2-1}=\dfrac{x^2-1}{x^2-1}+\dfrac{x+2}{x^2-1}=1+\dfrac{x+2}{x^2-1}\)Để D nguyên thì x+2=0⇔x=-2(t/m)
Vậy ...........................
Dạng 2: Phương trình
Bài 1. Giải phương trình
a) 2x+1=5-5x
⇔ 2x+5x=5-1
⇔ 7x=4
⇔ x=\(\dfrac{4}{7}\)
Vậy S=\(\left\{\dfrac{4}{7}\right\}\) là tập nghiệm của hương trình
b) 3x-2=2x+5
⇔ 3x-2x=5+2
⇔ x=7
Vậy......................
c) 7(x-2)=5(3x+1)
⇔ 7x-14=15x+5
⇔ 7x-15x=5+14
⇔ -8x=19
⇔ x=-\(\dfrac{19}{8}\)
Vậy..........................
d) 2x+5=20-3x
⇔ 2x+3x=20-5
⇔ 5x=15
⇔ x=3
Vậy...................
e) x-3=18-5x
⇔ x+5x=18+3
⇔ 6x=21
⇔ x=\(\dfrac{7}{2}\)
Vậy..............................
Ta có :
\(P=\left(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\right):\dfrac{1}{x^2-2x-8}\)
\(P=\left(\dfrac{8+x-4}{\left(x+4\right)\left(x-4\right)}\right):\dfrac{1}{\left(x+2\right)\left(x-4\right)}\)
\(P=\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}:\dfrac{1}{\left(x+2\right)\left(x-4\right)}\)
\(P=\dfrac{1}{x-4}.\left(x+2\right)\left(x-4\right)\)
\(P=\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x-4\right)}\)
\(P=x+2\)
2 . Ta có :
\(x^2-9x+20=0\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Thay \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\) vào biểu thức \(P=x+2\) ta được :
\(\left[{}\begin{matrix}4+2=6\\5+2=7\end{matrix}\right.\)
Kết luận __________________________________
ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}x^2-16\ne0\\x+4\ne0\\x^2-2x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+4\right)\ne0\\x\ne-4\\\left(x-4\right)\left(x+2\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne-2\end{matrix}\right.\)
\(P=\left(\dfrac{8}{x^2-16}+\dfrac{1}{x+4}\right):\dfrac{1}{x^2-2x-8}\) \(=\left(\dfrac{8}{\left(x-4\right)\left(x+4\right)}+\dfrac{1}{x+4}\right).\left(x^2-2x-8\right)\) \(=\dfrac{8+x-4}{\left(x-4\right)\left(x+4\right)}.\left(x^2-4x+2x-8\right)\) \(=\dfrac{x+4}{\left(x-4\right)\left(x+4\right)}.\left(x-4\right)\left(x+2\right)\) \(=x+2\) + Tính giá trị của P tại x2 - 9x + 20 = 0 \(x^2-9x+20=0\) \(\Rightarrow x^2-4x-5x+20=0\) \(\Rightarrow\left(x^2-4x\right)-\left(5x-20\right)=0\) \(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\left(kot/m\right)\\x=5\left(t/m\right)\end{matrix}\right.\) Thay x = 5 vào biểu thức P ,có : \(5+2=7\) Vậy tại x= 5 giá trị của P là 7
a) x2 - 5x - y2 -5y
= ( x2 - y2 ) + ( -5x - 5y)
= ( x - y ) ( x + y) - 5( x + y )
= ( x + y ) ( x - y -5)
b) x3 + 2x2 - 4x - 8
= x2 ( x + 2 ) - 4 ( x + 2 )
= ( x +2 ) ( x2 -4 )
= ( x+2)2 ( x-2)
Bai 2 :
a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)
\(=2x^2+2x+13-2x^2-2x+12=25\)
b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)
\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)
\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a, ĐKXĐ : x khác -4;4;-2
P =[ 8+x-4/(x-4).(x+4) ] : 1/(x+2).(x-4)
= x+4/(x+4).(x-4) . (x+2).(x-4)
= x+2
b, x^2-9x+20 = 0
<=> (x^2-4x)-(5x-20)=0
<=> (x-4).(x-5)=0
<=> x-4=0 hoặc x-5=0
<=> x=4 hoặc x=5
+, Với x=4 thì P = 4+2 = 6
+, Với x=5 thì P = 5+2 = 7
k mk nha