Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\dfrac{\left(X+2007\right)\left(X+2008\right)}{X}=\dfrac{X^2+4015X+4030056}{X}\)
\(=X+\dfrac{4030056}{X}+4015\) \(\ge2\sqrt{X.\dfrac{4030056}{X}}+4015\)\(=2\sqrt{4030056}+4015\).
Vậy GTNN của \(E=2\sqrt{4030056}+4015\).
Dấu bằng xảy ra khi và chỉ khi \(X=\dfrac{4030056}{X}\) hay \(X=\sqrt{4030056}\).
Ta có \(\left(2x+y+1\right)^2\ge0;\left(4x+my+5\right)^2\ge0\Rightarrow G\ge0\)
Xét hệ \(\hept{\begin{cases}2x+y+1=0\\4x+my+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y+2=0\\4x+my+5=0\end{cases}\Rightarrow}\left(m-2\right)y+3=0}\)
Nếu \(m\ne2\)thì \(m-2\ne0\Rightarrow\hept{\begin{cases}y=\frac{3}{2-m}\\x=\frac{m-5}{4-2m}\end{cases}}\)
\(\Rightarrow Min_G=0\)
Nếu m=2 thì
\(G=\left(2x+y+1\right)^2+\left(4x+my+5\right)^2=\left(2x+y+1\right)^2+\left[2\cdot\left(2x+y+1\right)+3\right]^2\)
Đặt 2x+y+1=z thì
\(G=5z^2+12z+9=5\left[\left(z+\frac{6}{5}\right)^2+\frac{9}{25}\right]=5\left(x+\frac{6}{5}\right)+\frac{9}{5}\ge\frac{9}{5}\)
\(Min_G=\frac{9}{5}\Leftrightarrow2x+y+1=\frac{-6}{5}\)hay \(y=\frac{-11}{5}-2x,x\inℝ\)
Ai trả lời nhanh và chính xác mình k
- LUYỆN TẬP
- HỌC BÀI
- HỎI ĐÁP
- KIỂM TRA
- Lê Thị Tuyết