K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Bạn ơi bài này có cho thêm đk x > 0 ko ?

21 tháng 11 2017

có pn nha

22 tháng 11 2017

x = 2007 and 2008 nha bn

22 tháng 11 2017

\(E=\dfrac{\left(X+2007\right)\left(X+2008\right)}{X}=\dfrac{X^2+4015X+4030056}{X}\)
\(=X+\dfrac{4030056}{X}+4015\) \(\ge2\sqrt{X.\dfrac{4030056}{X}}+4015\)\(=2\sqrt{4030056}+4015\).
Vậy GTNN của \(E=2\sqrt{4030056}+4015\).
Dấu bằng xảy ra khi và chỉ khi \(X=\dfrac{4030056}{X}\) hay \(X=\sqrt{4030056}\).

22 tháng 6 2023

`B=(x+sqrtx+5)/(sqrtx+1)=(sqrtx(sqrtx+1)+4)/(sqrtx+1)=sqrtx+4/(sqrtx+1)=[(sqrtx+1)+4/(sqrtx+1)]-1>=2\sqrt((sqrtx+1). 4/(sqrtx+1))-1=3`

Dấu "=" xảy ra `<=>x=1`

Vậy `B_(min)=3<=>x=1`

22 tháng 6 2023

sửa lại dòng đầu là + 4 không phải + 5

19 tháng 5 2020

Ta có \(\left(2x+y+1\right)^2\ge0;\left(4x+my+5\right)^2\ge0\Rightarrow G\ge0\)

Xét hệ \(\hept{\begin{cases}2x+y+1=0\\4x+my+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y+2=0\\4x+my+5=0\end{cases}\Rightarrow}\left(m-2\right)y+3=0}\)

Nếu \(m\ne2\)thì \(m-2\ne0\Rightarrow\hept{\begin{cases}y=\frac{3}{2-m}\\x=\frac{m-5}{4-2m}\end{cases}}\)

\(\Rightarrow Min_G=0\)

Nếu  m=2 thì

\(G=\left(2x+y+1\right)^2+\left(4x+my+5\right)^2=\left(2x+y+1\right)^2+\left[2\cdot\left(2x+y+1\right)+3\right]^2\)

Đặt 2x+y+1=z thì 

\(G=5z^2+12z+9=5\left[\left(z+\frac{6}{5}\right)^2+\frac{9}{25}\right]=5\left(x+\frac{6}{5}\right)+\frac{9}{5}\ge\frac{9}{5}\)

\(Min_G=\frac{9}{5}\Leftrightarrow2x+y+1=\frac{-6}{5}\)hay \(y=\frac{-11}{5}-2x,x\inℝ\)

NV
10 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)

\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)

Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0