K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

ko ai giup

mk à

giup mk voi mk sắp đi hoc rui

mk se ấy ma!!!

25 tháng 11 2016

???????????????

8 tháng 11 2023

a) Đặt A = \(6^5.5-3^5\)

\(=\left(2.3\right)^5.5-3^5\)

\(=2^5.3^5.5-3^5\)

\(=3^5.\left(2^5.5-1\right)\)

\(=3^5.\left(32.5-1\right)\)

\(=3^5.159\)

\(=3^5.3.53⋮53\)

Vậy \(A⋮53\)

b) Đặt \(B=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{119}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(B⋮3\)

\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7\)

\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)

Vậy \(B⋮7\)

\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31+...+2^{116}.31\)

\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)

Vậy \(B⋮31\)

\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)

\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(=2.255+2^9.255+...+2^{113}.255\)

\(=255.\left(2+2^9+...+2^{113}\right)\)

\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)

Vậy \(B⋮17\)

8 tháng 11 2023

c) Đặt C = \(3^{4n+1}+2^{4n+1}\)

Ta có:

\(3^{4n+1}=\left(3^4\right)^n.3\)

\(2^{4n}=\left(2^4\right)^n.2\)

\(3^4\equiv1\left(mod10\right)\)

\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)

\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)

\(2^4\equiv6\left(mod10\right)\)

\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)

\(\Rightarrow\) Chữ số tận cùng của C là 5

\(\Rightarrow C⋮5\)

B=25.3.(42003+42002+22001+.......+42+4+1)+25 

B=25.[4.(42003+42002+22001+.......+42+4+1)-(42003+42002+22001+.......+42+4+1)]+25

B=25.[(42004+42003+42002+22001+.......+42+4)-(42003+42002+22001+.......+42+4+1)]+25

B=25.(42004-1)+25

B=25.(42004-1+1)

B=25.42004

B=25.4.42003

B=100.42003

\(\Rightarrow\)B chia hết cho 100

5 tháng 12 2016

A=75(4^2004+4^2003+...+4^24+1)+25= 75(4^2004+4^2003+...+4^24)+75+25= 
=75(4^2004+4^2003+...+4^24)+100= 75*4(4^2003+4^2002...+4^23)+100= 
= 300(4^2003+4^2002...+4^23)+100= 100[3(4^2003+4^2002...+4^23)+1] chia het cho 100.

18 tháng 9 2021

đặt S=1+4+42+......+41999S=1+4+42+......+41999

⇒4S=4+42+43+....+42000⇒4S=4+42+43+....+42000

⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)

⇒3S=42000−1⇒S=42000−13⇒3S=42000−1⇒S=42000−13

Khi đó A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25

Ta có: 42000-1=(44)500-1=(...6)-1=....5

=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100

Vậy ta có điều phải chứng minh

18 tháng 9 2021

Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư?

Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.

a) 144: 3;          b) 144: 13;        c) 144: 30.

Phương pháp: Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.

Nếu r = 0 thì phép chia hết, nếu 0<  r < b thì phép chia có dư

Lời giải chi tiết

144 = 3.48 + 0

=> Phép chia hết

b) 144 = 13.11 + 1

=> Phép chia có dư

c) 144 = 30.4 + 24

=> Phép chia có dư

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

30 tháng 3 2016

gffghhhhj

30 tháng 3 2016

điên à

13 tháng 10 2016

Đặt A = 42016 + 42015 + ... + 42 + 4 + 1

=> A = 4.k + 1 (k \(\in\)N*)

P = 75.(4.k + 1) + 25

P = 75.4k + 75 + 25

P = 300.k + 100

P = 100.(3.k + 1) chia hết cho 100 (đpcm)

27 tháng 11 2016

=> B = 75.41993 + 75.41992 + ... + 75.4 + 75 + 25

        = 25.3.4.41992 + 25.3.4.41991 + ... + 25.3.4 + 100

        = 100.3.41992 + 100.3.41991 + ... + 100.3 + 100

        = 100 ( 41992 + 41991 + .... + 3 + 1 ) CHIA HẾT CHO 100

27 tháng 11 2016

vậy cho mình hỏi Đinh Đức Hùng, số 41993 sẽ sao ạ ?