Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=\frac{1}{t}.txy\le\frac{t^2x^2+y^2}{2t}=\frac{\left(3+\sqrt{5}\right)x^2+y^2}{1+\sqrt{5}}\)\(t^2=\frac{3+\sqrt{5}}{2}\)
\(\frac{2\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\left(3+\sqrt{5}\right)\left(2x^2+y^2+z^2+1\right)}\)
\(K=\frac{x^2+y^2+z^2+1}{xy+yz+z}=\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{2.\frac{1+\sqrt{5}}{2}x.y+\left(1+\sqrt{5}\right)yz+2.\frac{1+\sqrt{5}}{2}.z}\)
\(\ge\frac{\left(1+\sqrt{5}\right)\left(x^2+y^2+z^2+1\right)}{\frac{3+\sqrt{5}}{2}x^2+y^2+\frac{1+\sqrt{5}}{2}\left(y^2+z^2\right)+z^2+\frac{3+\sqrt{5}}{2}}=\frac{1+\sqrt{5}}{\frac{3+\sqrt{5}}{2}}=\sqrt{5}-1=k\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=1\\y=\frac{1+\sqrt{5}}{2}\\z=\frac{1+\sqrt{5}}{2}\end{cases}}\)
\(M=\frac{x^2+y^2+z^2+1}{xy+y+z}=\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{2.x.\frac{\sqrt{5}-1}{2}y+\left(\sqrt{5}-1\right)y+2.\frac{\sqrt{5}-1}{2}.z}\)
\(\ge\frac{\left(\sqrt{5}-1\right)\left(x^2+y^2+z^2+1\right)}{x^2+\frac{3-\sqrt{5}}{2}y^2+\frac{\sqrt{5}-1}{2}\left(y^2+1\right)+\frac{3-\sqrt{5}}{2}+z^2}=\sqrt{5}-1=m\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\y=1\\z=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
\(km+k+m=4\)
a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16
Áp dụng t/c của dãy tỉ số = nhau , ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)
Vậy x = 12 ; y = 20 ; z = -8
a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)
\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)
b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)
5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)
c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)
Vậy x = 12 ; y = 15 ; z = 18
hoặc x = -12 ; y = -15 ; z = -18
\(\frac{x}{3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{x}{14}\left(1\right);\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{35}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{14}=\frac{z}{35}\)=>\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}=\frac{2x^2+3y^2-z^2}{72+588-1225}=\frac{-2260}{-565}=4\)
hay \(\frac{x^2}{36}=4\Leftrightarrow x^2=144\Leftrightarrow x=\pm12\)
\(\frac{y^2}{196}=4\Leftrightarrow y^2=784\Leftrightarrow y=\pm28\)
\(\frac{z^2}{1225}=4\Leftrightarrow z^2=\Leftrightarrow z=\pm70\)
+)Với x=-12 thì y=-28 và z=-70
+)Với x=12 thì y=28 và z=70
Vậy ...................
giaỉ:
\(\frac{2x}{3}\)= \(\frac{3y}{4}\)=\(\frac{4z}{5}\)
\(\Rightarrow\)\(\frac{12x}{18}\)= \(\frac{12y}{16}\)=\(\frac{12z}{15}\)
áp dụng tính chất của dảy tỉ số bằng nhau ta có:
\(\frac{12x}{18}\)=\(\frac{12y}{16}\)= \(\frac{12z}{15}\) = 12x + 12y + \(\frac{12z}{18+16+15}\)= \(\frac{12\left(x+y+z\right)}{49}\)=\(\frac{12.49}{49}\)=12
\(\Rightarrow\)\(\frac{12x}{18}\)=12 \(\Rightarrow\)12x = 216 vậy x = 18
\(\frac{12y}{16}\)=12 \(\Rightarrow\)12y = 192 vậy y = 16
\(\frac{12z}{15}\)= 12 \(\Rightarrow\)12z = 180 vậy z= 15
vậy x = 18 ; y = 16 và z = 15
**** cho mình nha !!!
Ta có: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}\)
=>\(\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}=\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{24}=5\)
=> x=5.33=165
y=5.4=20
z=5.5=25
Ta có: \(3x=2y\Rightarrow y=\frac{3}{2}x\)\(;\)\(3x=\frac{3}{2}z\Rightarrow z=\frac{3}{\frac{3}{2}}x\Rightarrow z=2x\)
\(\Rightarrow x+y+z=x+\frac{3}{2}x+2x=4,5x=18\Rightarrow x=4\)
\(\Rightarrow y=\frac{3}{2}x=\frac{3}{2}.4=6\)\(;\)\(z=2x\Rightarrow z=2.4=8\)
(Dấu . là dấu nhân nha bạn)