K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2022

C=1+2+22+23+...+220

2C=2+22+23+...+220+221

2C-C=(2+22+23+...+220+221)-(1+2+22+23+...+220)

C=221-1

13 tháng 12 2022

       C =  1 + 2 + 22 + 23 + ......+220

     2.C =        2 + 22 + 23 +.......+220 + 221

2C - C =         221 - 1

         C =         221 - 1

27 tháng 3 2020

Giúp ta với ạ

27 tháng 3 2020

Giúp luôn câu này ạ 

Tìm số nguyên x , biết 

/-x/-5=/20+13+7/

14 tháng 4 2016
A=1+1+2/2+1+2+3/3+....+1+2+...+20/20 Rồi
30 tháng 1 2020

Câu 1 Tính 

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{20}+...+\frac{1}{2352}+\frac{1}{2450}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{48.49}+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)

Câu 2 Tính 

\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)

\(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)

Câu 3 

a) Ta có : M = 1 + 3 + 32 + 33 + ... + 3118 + 3119 (1)

=> 3M = 3 + 32 + 33 + 34 + ... + 3119 + 3120  (2)

Lấy (2) trừ (1) theo vế ta có : 

3M - M = (3 + 32 + 33 + 34 + ... + 3119 + 3120) - ( M = 1 + 3 + 32 + 33 + ... + 3118 + 3119)

=>  2M = 3120 - 1

=>    M = \(\frac{3^{120}-1}{2}\)

b) M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

        = (1 + 3 + 32) + (3+ 34 + 35) + ... + (3117 + 3118 + 3119)

        = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 3117(1 + 3 + 32)

        = 13 + 33.13 + ... + 3117.13

        = 13(1 + 33 + ... + 3117\(⋮\)13

=> M \(⋮\)13

M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (3116 + 3117 + 3118 + 3119)

= (1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + ... + 3116(1 + 3 + 32 + 33)

= 40 + 34.40 + ... + 3116.40

= 40(1 + 34 + ... + 3116

= 5.8.(1 + 34 + ... + 3116)  \(⋮\)5

4) Tính 

A = 2100 - 299 - 298 - ... - 22 - 2 - 1

=> 2A =  2101 - 2100 - 299 - 298 - 22 - 2 - 1

Lấy 2A trừ A theo vế ta có : 

2A - A = (2101 - 2100 - 299 - 298 - 22 - 2 - 1) - (2100 - 299 - 298 - ... - 22 - 2 - 1)

=>   A = 2101 - 2100 - 2100 + 1

=>   A = 2101 - (2100 + 2100) + 1

=>   A  = 2101 - 2100 . 2 + 1

=>   A = 1

Câu 5 a) C = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

          = 99.100.101 

=> C = 99.100.101 : 3 =  333300

b) Ta có : D = 22 + 42 + 62 + ... + 982

                    = 22(12 + 22  + 32 + ... + 492

                    =  2.(12 + 22  + 32 + ... + 492)

                    = 22.(1.1 + 2.2 + 3.3 + ... + 49.49)

                    = 22.[1.(2 - 1) + 2..(3 - 1) + 3(4 - 1) + ... + 49(50 - 1)]

                    = 22.[(1.2 + 2.3 + 3.4 + ... + 49.50) - (1 + 2 + 3 + 4 + ... + 49)]

Đặt E = 1.2 + 2.3 + 3.4 + ... + 49.50

=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50

          = 49.50.51 

=> E = 49.50.51/3 = 41650

Khi đó D = 22.[41650 - (1 + 2 + 3 + 4 + ... + 49)]

               = 22.[41650 - 49(49 + 1)/2]

               = 22.[41650 - 1225 

               = 22.40425

               = 161700

=> D = 161700

5 tháng 3 2020

câu này dễ mà bạn

IB

Ta có: \(A=2+2^2+2^3+...+2^{10}\)

\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^9+2^{10}\right)\)

\(\Leftrightarrow A=6+2^2\left(2+2^2\right)+..+2^8\left(2+2^2\right)\)

\(\Leftrightarrow A=6+2^2.6+...+2^8.6\)

\(\Leftrightarrow A=6\left(1+2^2+...+2^8\right)\)

Vì \(6⋮3\)

\(\Rightarrow A=6\left(1+2^2+..+2^8\right)⋮3\)

Vậy \(A⋮3\)

hok tốt !!!

15 tháng 10 2017

=2700

19 tháng 12 2020

=> 2700

9 tháng 10 2018

\(A=1+3^1+3^2+...+3^{2017}\)

\(3A=3+3^2+3^3+...+3^{2018}\)

\(3A-A=\left(3+3^2+3^3+...+3^{2018}\right)-\left(1+3^1+3^2+...+3^{2017}\right)\)

\(2A=3^{2018}-1\)

\(A=\frac{3^{2018}-1}{2}\)

\(\Rightarrow\)\(B-A=\frac{3^{2018}}{2}-\frac{3^{2018}-1}{2}=\frac{3^{2018}-3^{2018}+1}{2}=\frac{1}{2}\)

Vậy \(B-A=\frac{1}{2}\)

Chúc bạn học tốt ~ 

9 tháng 10 2018

ta có: A = 1 + 31 + 32 + ...+ 32017

=> 3A = 31 + 32 + 33 + ....+ 32018

=> 3A - A = 32018 - 1

\(\Rightarrow A=\frac{3^{2018}-1}{2}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3^{2018-1}}{2}}{\frac{3^{2018}}{2}}=\frac{\frac{3^{2018}}{2}}{\frac{3^{2018}}{2}}-\frac{1}{\frac{3^{2018}}{2}}=1-\frac{1}{\frac{3^{2018}}{2}}\)