Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Đặt \(c_1=a_1-b_1;c_2=a_2-b_2;...;c_{2015}=a_{2015}-b_{2015}\)
Xét tổng \(c_1+c_2+c_3+...+c_{2015}\) ta có:
\(c_1+c_2+c_3+...+c_{2015}\)
\(=\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_{2015}-b_{2015}\right)\)
\(=0\)
\(\Rightarrow c_1;c_2;c_3;...;c_{2015}\) phải có một số chẵn
\(\Rightarrow c_1.c_2.c_3...c_{2015}⋮2\)
Vậy \(\left(a_1-b_1\right)\left(a_2-b_2\right)...\left(a_{2015}-b_{2015}\right)⋮2\) (Đpcm)
a) xem lại thiếu cái đk gì đó
b) thích chọn số nào tùy
\(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)
Tiếp tục chứng minh.
\(\hept{\begin{cases}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{cases}}\)
Cộng theo vế: \(2\left(ab+1\right)\ge a+b+c\)
Trở lại bài toán: \(\frac{c}{ab+1}=\frac{2c}{2\left(ab+1\right)}\le\frac{2c}{a+b+c}\)
Tương tự rồi cộng theo vế suy ra đpcm
Ta có: \(a\le1\Rightarrow a-1\le0\)
\(b\le1\Rightarrow b-1\le0\)
Ta có: \(\left(a-1\right)\left(b-1\right)\ge0\)( mới chứng minh ở trên đó )
\(\Rightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\Leftrightarrow2ab+1\ge ab\ge a+b\)
\(\Rightarrow2ab+2\ge a+b+c\Leftrightarrow\frac{1}{2}ab+2\ge\frac{1}{a+b+c}+\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Ta cũng chứng minh tương tự với \(\frac{b}{ac+1}\le\frac{2b}{a+b+c};\frac{a}{bc+1}\le\frac{2a}{a+b+c}\)
Từ đây bạn tự làm tiếp rồi suy ra đpcm nha