K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

6 tháng 11 2021

\(\dfrac{a^2+b^2}{b^2+c^2}\)

\(=\dfrac{a^2+ac}{ac+c^2}\)(vì b2=ac)

\(=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}\)(đặt a,c ra ngoài)

\(=\dfrac{a}{c}\)(rút gọn a+c)

6 tháng 11 2021

Ta có: \(\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

Vậy \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

17 tháng 8 2017

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow a=bk;c=dk\)

\(VT=\dfrac{ac}{bd}=\dfrac{bkdk}{bd}=\dfrac{bdk^2}{bd}=k^2\left(1\right)\)

\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

17 tháng 8 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) =>\(a=bk,c=dk\)

=> \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k.k=k^2\left(1\right)\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}\)

=\(\dfrac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1)và(2)=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

Chúc Bạn Học Tốt

23 tháng 7 2017

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\dfrac{a}{b}=\dfrac{3a}{3b}\) ; \(\dfrac{c}{d}=\dfrac{2c}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{3a+2c}{3b+2d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)

24 tháng 7 2017

bạn ko làm hộ tớ phần b ơ

9 tháng 10 2018

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}\) (1)

Lại có: \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a^2}{b^2}=\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{ac}{bd}=\dfrac{c^2}{d^2}=\dfrac{2c^2}{2d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2c^2-ac}{2d^2-bd}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\).

2 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\left(1\right)\)

Thay (1) vào từng vế của đề bài:

\(VT=\dfrac{a^2+ac}{c^2-ac}=\dfrac{bk\left(bk+dk\right)}{dk\left(dk-bk\right)}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\)

Vế phải đặt thừa số chung sẽ ra VT => đpcm.

19 tháng 4 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét \(VT=\dfrac{a^2}{b^2}=\dfrac{\left(bk\right)^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\left(1\right)\)

Xét \(VP=\dfrac{a^2-ac}{b^2-bd}=\dfrac{\left(bk\right)^2-bk\cdot dk}{b^2-bd}=\dfrac{b^2k^2-bdk^2}{b^2-bd}\)

\(=\dfrac{k^2\left(b^2-bd\right)}{b^2-bd}=k^2\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM

11 tháng 12 2022

a; Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

c: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7b^2k^2-3\cdot bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2-3k}{11k^2-8}\)

\(\dfrac{7c^2-3cd}{11c^2-8d^2}=\dfrac{7d^2k^2-3kd^2}{11d^2k^2-8d^2}=\dfrac{7k^2-3k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7c^2-3cd}{11c^2-8d^2}\)

17 tháng 6 2019

a)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{c}{d}\) =>\(\frac{a}{c}=\frac{b}{d}\)

=>\(\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

=>\(\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)

NV
18 tháng 6 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a^2-c^2}{b^2-d^2}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\Rightarrow\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(a-c\right)^2}{\left(b-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)