Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
B = \(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\)
B = \(\frac{-3}{4}.\frac{-8}{9}...\frac{-99}{100}\)
B = \(-\left(\frac{3}{4}.\frac{8}{9}...\frac{99}{100}\right)\)
B = \(-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{9.11}{10.10}\right)\)
B = \(-\left(\frac{1.2...9}{2.3...10}.\frac{3.4...11}{2.3...10}\right)\)
B = \(-\left(\frac{1}{10}.\frac{11}{2}\right)\)
B = \(\frac{-11}{20}\)
Vì \(\frac{11}{20}>\frac{11}{21}\)nên \(\frac{-11}{20}< \frac{-11}{21}\)
Vậy \(B< \frac{-11}{21}\)
\(S=\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right)...\left(\frac{1}{81}-1\right).\left(\frac{1}{100}-1\right)\)
\(S=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}........\frac{-80}{81}.\frac{-99}{100}\)
\(-S=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{80}{81}.\frac{99}{100}\)
\(-S=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}........\frac{8.10}{9.9}.\frac{9.11}{10.10}\)
\(-S=\frac{1.3.2.4.3.5........8.10.9.11}{2.2.3.3.4.4.......9.9.10.10}\)
\(-S=\frac{\left(1.2.3......8.9\right).\left(3.4.5.......10.11\right)}{\left(2.3.4.......9.10\right).\left(2.3.4........9.10\right)}\)\(=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}=>S=\frac{-11}{20}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{400}-1\right)\)
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{400}\right)\)
\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{399}{400}\)
\(-A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{19.21}{20.20}\)
\(-A=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\cdot\frac{3\cdot4\cdot5\cdot...\cdot21}{2\cdot3\cdot4\cdot...\cdot20}\)
\(-A=\frac{1}{20}\cdot\frac{21}{2}=\frac{21}{40}>\frac{20}{40}=\frac{1}{2}\)
\(-A>\frac{1}{2}\Rightarrow A< \frac{1}{2}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)......\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
= \(-\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{80}{81}.\frac{99}{100}\)
=\(-\frac{1.3.2.4.3.5..............8.10.9.11}{2^2.3^2.4^2.......10^2}=-\frac{\left(1.2.3.....9\right)\left(3.4.5....11\right)}{2.3.4....10.2.3.4.....10}=-\frac{11}{20}\)