K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2020

2. \(A\left(x\right)=x^2+3x-4=x^2+4x-x-4=x\left(x+4\right)-\left(x+4\right)=\left(x+4\right)\left(x-1\right)\)

A(x) >0 => (x+4)(x-1) cùng dấu

TH1: x+4; x-1 cùng âm \(\hept{\begin{cases}x+4< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -4\\x< 1\end{cases}\Leftrightarrow}x< -4}\)

TH2: x+4;x-1 cùng dương \(\hept{\begin{cases}x+4>0\\x-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x>1\end{cases}\Leftrightarrow}x>1}\)

3. \(A\left(x\right)=\left(x+4\right)\left(x-1\right)\)

A(x) <0 => \(\orbr{\begin{cases}x+4< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x< -4\\x< 1\end{cases}}\)

Vậy x<-4 hoặc x<1 thì A(x)<0

1: Đặt A(x)=0

\(x^2+3x-4=0\)

\(\Leftrightarrow x^2+4x-x-4=0\)

\(\Leftrightarrow x\left(x+4\right)-\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

Vậy: x=-4 và x=1 là nghiệm của đa thức \(A\left(x\right)=x^2+3x-4\)

2: Để A(x)>0 thì (x+4)(x-1)>0

Trường hợp 1:

\(\left\{{}\begin{matrix}x+4>0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x>1\end{matrix}\right.\Leftrightarrow x>1\)

Trường hợp 2:

\(\left\{{}\begin{matrix}x+4< 0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x< 1\end{matrix}\right.\Leftrightarrow x< -4\)

Vậy: Khi x>1 hoặc x<-4 thì A(x)>0

3: Để A(x)<0 thì (x+4)(x-1)<0

Trường hợp 1:

\(\left\{{}\begin{matrix}x+4>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4< x\\x< 1\end{matrix}\right.\Leftrightarrow-4< x< 1\)

Trường hợp 2:

\(\left\{{}\begin{matrix}x+4< 0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4>x\\x>1\end{matrix}\right.\Leftrightarrow-4>x>1\Leftrightarrow x\in\varnothing\)

Vậy: khi -4<x<1 thì A(x)<0

4: Ta có: \(A\left(x\right)=x^2+3x-4\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{25}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của đa thức \(A\left(x\right)=x^2+3x-4\)\(-\frac{25}{4}\) khi \(x=-\frac{3}{2}\)

20 tháng 6 2016

a) \(X^2+5X< 0\)

<=> \(X\left(X+5\right)< 0\)

<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)

 TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)

Vậy \(-5< x< 0\)

29 tháng 6 2015

tách bài 2, bài 3 riêng ra rồi mình làm cho. mỗi câu này đều dài, bạn để cả đống thế này k ai làm cho đâu. khi nào tách ra thì gửi link mình làm hết cho nha

21 tháng 6 2020

Câu 1 : M(x) = 6x3 + 2x4 - x2 + 3x2 - 2x3 - x4 + 1 - 4x3

                     = ( 6x3 - 2x3 - 4x3 ) + ( 2x4 - x4 ) + ( 3x2 - x2 ) + 1

                     = x4 + 2x2 + 1

Có : \(x^4\ge0\forall x\)

\(x^2\ge0\forall x\Rightarrow2x^2\ge0\)

=> \(x^4+2x^2+1\ge1>0\forall x\)

=> M(x) vô nghiệm ( đpcm ) 

21 tháng 6 2020

Câu 2 : A(x) = m + nx + px( x - 1 )

A(0) = 5 <=> m + n.0 + p.0( 0 - 1 ) = 5

              <=> n + 0 + 0 = 5

              <=> m = 5

A(1) = -2 <=> 5 + 1n + 1p( 1 - 1 ) = -2

               <=> 5 + n + 0 = -2

               <=> 5 + n = -2

               <=> n = -7

A(2) = 7 <=> 5 + (-7) . 2 + 2p( 2 - 1 ) = 7

              <=> 5 - 14 + 2p . 1 = 7

              <=> -9 + 2p = 7

              <=> 2p = 16 

              <=> p = 8

Vậy A(x) = 5 + (-7)x + 8x( x - 1 )

28 tháng 8 2014

Nhóm thành tích
 \(A = (x+1)(5x^2-4x+4)/ x^2\)

A=0 => x= -1  Hoặc
            \( 5x^2-4x+4=0\)  
            Nhưng  \( 5x^2-4x+4>0\)  Luôn > 0 vì
                                 Nhóm   \( 5x^2-4x+4 = 5 (x-2/5)^2 + 16/5\) luôn >0 
A>0 => x+1 > 0 => x>-1  Và
             \( 5x^2-4x+4>0\)  Luôn > 0 Đã chứng minh ở trên
A<0 thì x<-1

9 tháng 10 2020

1.

a) \(\frac{x+2}{2x-3}< 0\) ( ĐKXĐ : x ≠ 3/2 )

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+2< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>\frac{3}{2}\end{cases}}\)( loại )

9. \(\hept{\begin{cases}x+2>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-2< x< \frac{3}{2}\)

=> Với \(-2< x< \frac{3}{2}\)thì tmđb

b) \(\frac{x\left(x-2\right)}{x^2+3}>0\)

Vì x2 + 3 ≥ 3 > 0 ∀ x

nên ta chỉ cần xét x( x - 2 ) > 0

1. \(\hept{\begin{cases}x>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>2\end{cases}}\Leftrightarrow x>2\)

2. \(\hept{\begin{cases}x< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 2\end{cases}}\Leftrightarrow x< 0\)

Vậy \(\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)thì tmđb

9 tháng 10 2020

2.

A = x2 + 4x = x( x + 4 )

Để A dương => A > 0

<=> x( x + 4 ) > 0

Xét hai trường hợp

1. \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\Leftrightarrow x>0\)

2. \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -4\end{cases}}\Leftrightarrow x< -4\)

Vậy với \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì tmđb

B = ( x - 3 )( x + 7 )

Để B dương => B > 0

<=> ( x - 3 )( x + 7 ) > 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}}\Leftrightarrow x>3\)

2. \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}}\Leftrightarrow x< -7\)

Vậy với \(\orbr{\begin{cases}x>3\\x< -7\end{cases}}\)thì tmđb

C = ( 1/2 - x )( 1/3 - x )

Để C dương => C > 0

<=> ( 1/2 - x )( 1/3 - x ) > 0

Xét hai trường hợp

1. \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-\frac{1}{2}\\-x>-\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}}\Leftrightarrow x< \frac{1}{3}\)

2. \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -\frac{1}{2}\\-x< -\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\Leftrightarrow x>\frac{1}{2}\)

Vậy với \(\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)thì tmđb