Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(A\left(x\right)=x^2+3x-4=x^2+4x-x-4=x\left(x+4\right)-\left(x+4\right)=\left(x+4\right)\left(x-1\right)\)
A(x) >0 => (x+4)(x-1) cùng dấu
TH1: x+4; x-1 cùng âm \(\hept{\begin{cases}x+4< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -4\\x< 1\end{cases}\Leftrightarrow}x< -4}\)
TH2: x+4;x-1 cùng dương \(\hept{\begin{cases}x+4>0\\x-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x>1\end{cases}\Leftrightarrow}x>1}\)
3. \(A\left(x\right)=\left(x+4\right)\left(x-1\right)\)
A(x) <0 => \(\orbr{\begin{cases}x+4< 0\\x-1< 0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x< -4\\x< 1\end{cases}}\)
Vậy x<-4 hoặc x<1 thì A(x)<0
1: Đặt A(x)=0
⇔\(x^2+3x-4=0\)
\(\Leftrightarrow x^2+4x-x-4=0\)
\(\Leftrightarrow x\left(x+4\right)-\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Vậy: x=-4 và x=1 là nghiệm của đa thức \(A\left(x\right)=x^2+3x-4\)
2: Để A(x)>0 thì (x+4)(x-1)>0
Trường hợp 1:
\(\left\{{}\begin{matrix}x+4>0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x>1\end{matrix}\right.\Leftrightarrow x>1\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+4< 0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x< 1\end{matrix}\right.\Leftrightarrow x< -4\)
Vậy: Khi x>1 hoặc x<-4 thì A(x)>0
3: Để A(x)<0 thì (x+4)(x-1)<0
Trường hợp 1:
\(\left\{{}\begin{matrix}x+4>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4< x\\x< 1\end{matrix}\right.\Leftrightarrow-4< x< 1\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x+4< 0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4>x\\x>1\end{matrix}\right.\Leftrightarrow-4>x>1\Leftrightarrow x\in\varnothing\)
Vậy: khi -4<x<1 thì A(x)<0
4: Ta có: \(A\left(x\right)=x^2+3x-4\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{25}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy: Giá trị nhỏ nhất của đa thức \(A\left(x\right)=x^2+3x-4\) là \(-\frac{25}{4}\) khi \(x=-\frac{3}{2}\)
a) \(X^2+5X< 0\)
<=> \(X\left(X+5\right)< 0\)
<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)
TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)
Vậy \(-5< x< 0\)
tách bài 2, bài 3 riêng ra rồi mình làm cho. mỗi câu này đều dài, bạn để cả đống thế này k ai làm cho đâu. khi nào tách ra thì gửi link mình làm hết cho nha
Câu 1 : M(x) = 6x3 + 2x4 - x2 + 3x2 - 2x3 - x4 + 1 - 4x3
= ( 6x3 - 2x3 - 4x3 ) + ( 2x4 - x4 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
Có : \(x^4\ge0\forall x\)
\(x^2\ge0\forall x\Rightarrow2x^2\ge0\)
=> \(x^4+2x^2+1\ge1>0\forall x\)
=> M(x) vô nghiệm ( đpcm )
Câu 2 : A(x) = m + nx + px( x - 1 )
A(0) = 5 <=> m + n.0 + p.0( 0 - 1 ) = 5
<=> n + 0 + 0 = 5
<=> m = 5
A(1) = -2 <=> 5 + 1n + 1p( 1 - 1 ) = -2
<=> 5 + n + 0 = -2
<=> 5 + n = -2
<=> n = -7
A(2) = 7 <=> 5 + (-7) . 2 + 2p( 2 - 1 ) = 7
<=> 5 - 14 + 2p . 1 = 7
<=> -9 + 2p = 7
<=> 2p = 16
<=> p = 8
Vậy A(x) = 5 + (-7)x + 8x( x - 1 )
1.
a) \(\frac{x+2}{2x-3}< 0\) ( ĐKXĐ : x ≠ 3/2 )
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+2< 0\\2x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>\frac{3}{2}\end{cases}}\)( loại )
9. \(\hept{\begin{cases}x+2>0\\2x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-2\\x< \frac{3}{2}\end{cases}}\Leftrightarrow-2< x< \frac{3}{2}\)
=> Với \(-2< x< \frac{3}{2}\)thì tmđb
b) \(\frac{x\left(x-2\right)}{x^2+3}>0\)
Vì x2 + 3 ≥ 3 > 0 ∀ x
nên ta chỉ cần xét x( x - 2 ) > 0
1. \(\hept{\begin{cases}x>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>2\end{cases}}\Leftrightarrow x>2\)
2. \(\hept{\begin{cases}x< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 2\end{cases}}\Leftrightarrow x< 0\)
Vậy \(\orbr{\begin{cases}x>2\\x< 0\end{cases}}\)thì tmđb
2.
A = x2 + 4x = x( x + 4 )
Để A dương => A > 0
<=> x( x + 4 ) > 0
Xét hai trường hợp
1. \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\Leftrightarrow x>0\)
2. \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x< -4\end{cases}}\Leftrightarrow x< -4\)
Vậy với \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì tmđb
B = ( x - 3 )( x + 7 )
Để B dương => B > 0
<=> ( x - 3 )( x + 7 ) > 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}}\Leftrightarrow x>3\)
2. \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}}\Leftrightarrow x< -7\)
Vậy với \(\orbr{\begin{cases}x>3\\x< -7\end{cases}}\)thì tmđb
C = ( 1/2 - x )( 1/3 - x )
Để C dương => C > 0
<=> ( 1/2 - x )( 1/3 - x ) > 0
Xét hai trường hợp
1. \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-\frac{1}{2}\\-x>-\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}}\Leftrightarrow x< \frac{1}{3}\)
2. \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -\frac{1}{2}\\-x< -\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}}\Leftrightarrow x>\frac{1}{2}\)
Vậy với \(\orbr{\begin{cases}x< \frac{1}{3}\\x>\frac{1}{2}\end{cases}}\)thì tmđb