Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a3b3+2b3c3+3a3c3
= a3b3_b3c3+3b3c3 + 3a3c3
= b3(a3-c3) +3c3(b3+a3)
=b3(-b3-2c3)+3c3(-c3)
=-b6-2b3c3-3c6 \(\le0\)
Ta có:
\(a^3b^3+2b^3c^3+3a^3c^3=b^3\left(a^3+2c^3\right)+3a^3c^3\)
Từ \(a^3+b^3+c^3=0\Rightarrow a^3+2c^3=c^3-b^3\), thì:
\(b^3(c^3-b^3)+3a^3c^3=-b^6+c^3(b^3+3a^3)\)
Và từ \(a^3+b^3+c^3=0\Rightarrow b^3+3a^3=2a^3-c^3\)
Suy ra \(-b^6+c^3(2a^3-c^3)=-(b^3-c^3)^2\le 0\)
Ta có :
\(a^3b^3+2+b^3c^3+3a^3c^3\)
= \(a^3b^3-b^3c^3+3b^3c^3+3a^3c^3\)
= \(b^3(a^3-c^3)+3c^3(b^3+a^3)\)
= \(b^3(-b^3-2c^3)+3c^3(-c^3)\)
Vậy : \(b^6-2b^3c^3-3c^6\le0\)
Đúng nhá bạn.Chúc bạn học tốt
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b3 = b3/c3 = c3/d3 (1)
mà b2 = ac ; c2 = bd
=> b3/c3 = bac/cbd = a/d (2)
Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d
\(b^2\)= \(ac\)=> \(\frac{a}{b}\)= \(\frac{b}{c}\)(1)
\(c^2\)= \(bd\)=> \(\frac{b}{c}\)= \(\frac{c}{d}\)(2)
từ (1) và (2) => \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)* \(\frac{b}{c}\)* \(\frac{c}{d}\)= \(\frac{a}{d}\) (*)
\(\frac{a^3}{b^3}\)= \(\frac{b^3}{c^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (**)
Từ (*) và (**) => \(\frac{a}{d}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (đpcm)
Đây nha
Ta có:
(1−�2)(1−�)>0(1−a2)(1−b)>0
⇔1+�2�>�2+�>�3+�3(1)⇔1+a2b>a2+b>a3+b3(1)
(Vì 0<�,�<10<a,b<1)
Tương tự ta có:
\hept{1+�2�>�3+�3(2)�+�2�>�3+�3(3)\hept{1+b2c>b3+c3(2)a+c2a>c3+a3(3)
Cộng (1), (2), (3) vế theo vế ta được
2(�3+�3+�3)<3+�2�+�2�+�2�2(a3+b3+c3)<3+a2b+b2c+c2a
Đúng(0)