K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:

Vì $a^2+b^2=1$ nên:

\((a+b)^2-2=(a+b)^2-2(a^2+b^2)=(a^2+2ab+b^2)-2(a^2+b^2)\)

\(=2ab-(a^2+b^2)=-(a^2-2ab+b^2)=-(a-b)^2\leq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow (a+b)^2\leq 2\)

Ta có đpcm.

Dấu "=" xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

29 tháng 6 2017

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\)

\(\Leftrightarrow a=b\left(đpcm\right)\)

Vậy...

30 tháng 6 2017

cảm ơn bạn nhoavui

8 tháng 5 2019

Áp dụng bất đẳng thức Bunhiacopxki, ta có:

\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)

Dấu = khi a=b=c\(=\frac{1}{3}\)

8 tháng 5 2019

ta có: a2 +b2 +c2 =\(\frac{a^2}{1}\) +\(\frac{b^2}{1}\) +\(\frac{c^2}{1}\)

áp dụng bđt bunhia dạng phân thức ta có :

\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\)\(\frac{\left(a+b+c\right)^2}{1+1+1}\) =\(\frac{1}{3}\)

đấu = xảy ra khi a=b=c=\(\frac{1}{3}\)

25 tháng 3 2020

(a+b)^2=a^2+b^2+2ab=a^2+b^2-2ab+4ab=(a-b)^2+4ab

10 tháng 9 2016

Bài 1:

a) Biến đổi vế trái ta được:

\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2=VP\)

=>đpcm

b) Biến đổi vế trái ta có:

\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)

=>đpcm

 

 

10 tháng 9 2016

x2 - 6x + y2 + 10y + 34 = - (4z - 1)2

x2 - 2 . x . 3 + 9 + y2 + 2 . y . 5 + 25 + (4z - 1)= 0

(x - 3)2 + (y + 5)2 + (4z - 1)2 = 0

\(\begin{cases}x-3=0\\y+5=0\\4z-1=0\end{cases}\)

\(\begin{cases}x=3\\y=-5\\z=\frac{1}{4}\end{cases}\)