K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a-b=0\)

\(\Leftrightarrow a=b\left(đpcm\right)\)

Vậy...

30 tháng 6 2017

cảm ơn bạn nhoavui

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:

Vì $a^2+b^2=1$ nên:

\((a+b)^2-2=(a+b)^2-2(a^2+b^2)=(a^2+2ab+b^2)-2(a^2+b^2)\)

\(=2ab-(a^2+b^2)=-(a^2-2ab+b^2)=-(a-b)^2\leq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow (a+b)^2\leq 2\)

Ta có đpcm.

Dấu "=" xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

25 tháng 3 2020

(a+b)^2=a^2+b^2+2ab=a^2+b^2-2ab+4ab=(a-b)^2+4ab

8 tháng 5 2019

Áp dụng bất đẳng thức Bunhiacopxki, ta có:

\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)

Dấu = khi a=b=c\(=\frac{1}{3}\)

8 tháng 5 2019

ta có: a2 +b2 +c2 =\(\frac{a^2}{1}\) +\(\frac{b^2}{1}\) +\(\frac{c^2}{1}\)

áp dụng bđt bunhia dạng phân thức ta có :

\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\)\(\frac{\left(a+b+c\right)^2}{1+1+1}\) =\(\frac{1}{3}\)

đấu = xảy ra khi a=b=c=\(\frac{1}{3}\)

10 tháng 6 2017

a, Ta có: \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

= \(a^3+b^3+a^3-b^3=a^3+a^3=2a^3\)

\(\xrightarrow[]{}\) đpcm

b, Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(\left(a-b\right)^2+ab\right)\)

\(\xrightarrow[]{}\) đpcm

c, Ta có: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(\xrightarrow[]{}\) đpcm

10 tháng 6 2017

Tham khảo nè!!

Câu hỏi của Phạm Thị Cẩm Huyền - Toán lớp 8 | Học trực tuyến

Chúc bn học tốt!!

2 tháng 10 2018

Từ a+b=c Ta được a+b-c=0

Do đó:\(\left(a+b-c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=0\)(đccm)

2 tháng 10 2018

Có thể ( chỉ là có thể thôi ) các bạn chưa học hằng đẳng thức nâng cao nên mình sẽ chứng minh và dùng nó luôn , còn các bạn cứ lấy nó mà dung , bởi vì nó cũng có thể được coi là " định lý ", đại loại thế

Bổ đề : CMR: \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

\(\left(a+b-c\right)\left(a+b-c\right)=a^2+ab-ac+ab+b^2-bc-ac-bc+c^2\)

\(=a^2+b^2+c^2+\left(ab+ab\right)-\left(ac+ac\right)-\left(bc+bc\right)\)

\(=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

Nhờ bổ đề trên\(\Rightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=a^2+b^2+c^2+2ab-2ac-2bc=\left(a+b-c\right)^2=0\)

\(\Rightarrow\)\(a+b-c=0\)vì \(\left(a+b-c\right)\ge0\)

\(\Rightarrow\)\(a+b=c\left(DPCM\right)\)

Còn nhiều hằng đẳng thức nâng cao nữa cũng kiểu dạng này, nếu bạn muốn biết thì hãy tự chứng minh nó và áp dụng nó vào bài như một bổ đề, mình chỉ chia sẽ kinh nghiệm vậy thôi

GOOD LUCK

3 tháng 5 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{9}{\dfrac{4}{3}}=\dfrac{9}{12}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{2}\)

4 tháng 5 2018

có cách khác ko bn ?