K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

\(A=\left(\frac{1}{1-x}-1\right):\left(x+1-\frac{1-2x}{1-x}\right)\)     \(\left(ĐK:x\ne1;x\ne2\right)\)

\(=\frac{1-1+x}{1-x}:\frac{\left(1-x\right)\left(x+1\right)-\left(1-2x\right)}{1-x}\)

\(=\frac{x}{1-x}\cdot\frac{1-x}{1-x^2-1+2x}\)

\(=\frac{x}{-x^2+2x}\)

\(=\frac{x}{-x\left(x-2\right)}=-\frac{1}{x-2}=\frac{1}{2-x}\)

b) Để A=\(\frac{1}{2}\) \(\Leftrightarrow\)\(\frac{1}{2-x}=\frac{1}{2}\)

                   \(\Leftrightarrow2-x=2\)

                   \(\Leftrightarrow-x=0\Leftrightarrow x=0\)

c) Để A>1 \(\Leftrightarrow\)\(\frac{1}{2-x}>1\)

                 \(\Leftrightarrow\)\(\frac{1}{2-x}-1>0\) 

                 \(\Leftrightarrow\)\(\frac{1-2+x}{2-x}>0\)

                 \(\Leftrightarrow\)\(\frac{x-1}{2-x}>0\)

\(\Leftrightarrow\begin{cases}x-1>0\\2-x>0\end{cases}\) hoặc \(\begin{cases}x-1< 0\\2-x< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>1\\x< 2\end{cases}\) hoặc \(\begin{cases}x< 1\\x>2\end{cases}\)(vô nghiệm)

\(\Leftrightarrow1< x< 2\)

Vậy \(1< x< 2\) thì A<1

 

 

 

 

 

28 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne-2\\x\ne3\\x\ne2\end{cases}}\)

\(A=\left(1-\frac{4}{x+2}\right):\left(1+\frac{1}{x-3}\right)\)

\(\Leftrightarrow A=\frac{x-2}{x+2}:\frac{x-2}{x-3}\)

\(\Leftrightarrow A=\frac{x-3}{x+2}\)

b) Để A nguyên 

\(\Leftrightarrow x-3⋮x+2\)

\(\Leftrightarrow x+2-5⋮x+2\)

\(\Leftrightarrow5⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1;-7;3\right\}\)

Vậy để A nguyên \(\Leftrightarrow x\in\left\{-3;1;-7;3\right\}\)

c) Để A > 0

\(\Leftrightarrow\frac{x-3}{x+2}>0\)

\(\Leftrightarrow1-\frac{5}{x+2}>0\)

\(\Leftrightarrow\frac{5}{x+2}< 0\)

\(\Leftrightarrow x+2< 0\)(vì 5 > 0)

\(\Leftrightarrow x< -2\)

Vậy để A > 0 \(\Leftrightarrow x< -2\)

24 tháng 1 2020

a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\)\(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)

+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)

\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)

+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)

+) \(x+1\ne0\Leftrightarrow x\ne-1\)

+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)

\(\Leftrightarrow x\ne0;x\ne-2\)

+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)

Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)

24 tháng 1 2020

a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)

\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)

\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)

\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)

b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)

Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

x-2-6-3-2-11236
x-4-1013458

Vậy ............................

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:
ĐKXĐ: $x\neq \pm 2$

\(A=\left[\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right]:\frac{x^2-4+10-x^2}{x+2}\\ =\frac{x-2(x+2)+x-2}{(x-2)(x+2)}:\frac{6}{x+2}\\ =\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}\\ =\frac{-1}{x-2}=\frac{1}{2-x}\)

Để $A<0\Leftrightarrow \frac{1}{2-x}<0$

$\Leftrightarrow 2-x<0\Leftrightarrow x>2$

Kết hợp với ĐKXĐ suy ra $x>2$

b.

Với $x$ nguyên, để $A$ nguyên thì $1\vdots 2-x$

$\Rightarrow 2-x=1$ hoặc $2-x=-1$

$\Rightarrow x=1$ hoặc $x=3$