Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(A>0\Leftrightarrow\frac{-1}{x-2}>0\)
\(\Leftrightarrow x-2< 0\) ( vì \(-1< 0\))
\(\Leftrightarrow x< 2\)
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(A=\)\(\left[\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\frac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\left[\frac{x^2-4+10-x^2}{x+2}\right]\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(A=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(A=\frac{-1}{x-2}\)
a) \(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)(ĐKXĐ: \(\hept{\begin{cases}x\ne\pm2\\x\ne3\end{cases}}\))\(=\left[\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}\right]:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)\(=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}.\frac{2-x}{x-3}=\frac{4x}{x-3}\)
b) l\(x-5\)l\(=2\Leftrightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\left(n\right)\\x=3\left(l\right)\end{cases}\Rightarrow A=\frac{4.7}{7-3}=\frac{28}{4}=7}\)
c)
* Để A có giá trị là một số nguyên thì \(A=\frac{4x}{x-3}=\frac{4x-12+12}{x-3}=4+\frac{12}{x-3}\)là một số nguyên hay \(\frac{12}{x-3}\)là một số nguyên \(\Rightarrow x-3\inƯ\left(12\right)\Rightarrow S=\left(-9;-3;-1;0;1;4;5;6;7;9;15\right)\)(1)
* Để \(A=4+\frac{12}{x-3}< 4\Leftrightarrow\frac{12}{x-3}< 0\) thì \(x-3< 0\Leftrightarrow x< 3\)(2)
(1)(2) \(\Rightarrow S=\left(-9;-3;-1;0;1\right)\)
a.
\(ĐKXĐ:x\ne\pm1;\)
Ta có:
\(P=\left(\frac{x^4+x^2-4x+1}{x^2-1}-\frac{x-1}{x+1}+\frac{x+1}{x-1}\right)\cdot\frac{x\left(x+1\right)-\left(1+x\right)}{x^3-1}\)
\(\Rightarrow P=\left(\frac{x^4+x^2-4x+1}{x^2-1}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{\left(x+1\right)\left(x-1\right)}{x^3-1}\)
\(\Rightarrow P=\left(\frac{x^4+x^2-4x+1}{x^2-1}-\frac{x^2-2x+1}{x^2-1}+\frac{x^2+2x+1}{x^2-1}\right)\cdot\frac{x^2-1}{x^3-1}\)
\(\Rightarrow P=\frac{x^4+x^2+1}{x^2-1}\cdot\frac{x^2-1}{x^3-1}\)
\(\Rightarrow P=\frac{x^4+x^2+1}{x^3-1}\)
b.
Để P là số nguyên thì \(x^4+x^2+1⋮x^3-1\)
\(\Rightarrow\left(x^4-x\right)+\left(x^2+x+1\right)⋮\left(x-1\right)\left(x^2+x+1\right)\)
\(\Rightarrow x\left(x^3-1\right)+\left(x^2+x+1\right)⋮\left(x-1\right)\left(x^2+x+1\right)\)
\(\Rightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)⋮\left(x-1\right)\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)⋮\left(x-1\right)\left(x^2+x+1\right)\)
\(\Rightarrow x^2-x+1⋮x-1\)
\(\Rightarrow x\left(x-1\right)+1⋮x-1\)
\(\Rightarrow1⋮x-1\)
\(\Rightarrow x-1\in\left\{1;-1\right\}\)
\(\Rightarrow x=1\left(KTMĐK\right);x=0\)
Vậy x=0.
P/S:Không chắc chắn lắm đâu nha mn,nếu có j sai thì ib vs em ah.