Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{50}{111}>\frac{50}{200}\)
\(\frac{50}{112}>\frac{50}{200}\)
\(\frac{50}{113}>\frac{50}{200}\)
\(\frac{50}{114}>\frac{50}{200}\)
\(\Rightarrow A>\frac{50}{200}+\frac{50}{200}+\frac{50}{200}+\frac{50}{200}\)hay \(A>\frac{50}{200}.4\left(1\right)\)
Mặt khác :
\(\frac{50}{111}< \frac{50}{100}\)
\(\frac{50}{112}< \frac{50}{100}\)
\(\frac{50}{113}< \frac{50}{100}\)
\(\frac{50}{114}< \frac{50}{100}\)
\(\Rightarrow A< \frac{50}{100}+\frac{50}{100}+\frac{50}{100}+\frac{50}{100}\)hay \(A< \frac{50}{100}.4\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow1< A< 2\left(đpcm\right)\)
50/111 < 50/100
50/112 < 50/100
50/113 < 50/100
50/114 < 50/100
=> A < 200/100 => A < 2
50/111 > 50/200
50/112 > 50/200
50/113 > 50/200
50/114 > 50/200
=> A > 200/200 => A > 1
Vậy 1 < A < 2
AI THẤY OK ỦNG HỘ NHÉ
A<50/100+50/100+50/100+50/100=4.50/100=2
=>A<2
A>4.50/150=4/3+1+1/3>1
=>dccm
Ta có :
\(A=\dfrac{50}{111}+\dfrac{50}{112}+\dfrac{50}{113}+\dfrac{50}{114}\)
Ta thấy :
\(\dfrac{50}{111}>\dfrac{50}{200}\)
\(\dfrac{50}{112}>\dfrac{50}{200}\)
\(\dfrac{50}{113}>\dfrac{50}{200}\)
\(\dfrac{50}{114}>\dfrac{50}{200}\)
\(\Rightarrow A>\dfrac{50}{200}+\dfrac{50}{200}+\dfrac{50}{200}+\dfrac{50}{200}\)
\(\Rightarrow A>\dfrac{50}{200}.4=1\) \(\left(1\right)\)
Mặt khác :
\(\dfrac{50}{111}< \dfrac{50}{100}\)
\(\dfrac{50}{112}< \dfrac{50}{100}\)
\(\dfrac{50}{113}< \dfrac{50}{100}\)
\(\dfrac{50}{114}< \dfrac{50}{100}\)
\(\Rightarrow A< \dfrac{50}{100}+\dfrac{50}{100}+\dfrac{50}{100}+\dfrac{50}{100}\)
\(\Rightarrow A< \dfrac{50}{100}.4=2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow1< A< 2\rightarrowđpcm\)
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
Vậy \(A< 2\)
em lp 5 nen ko biet!
\(\frac{50}{111}>\frac{1}{4};\frac{50}{112}>\frac{1}{4};\frac{50}{113}>\frac{1}{4};\frac{50}{114}>\frac{1}{4}\)
\(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}>\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)(1)
\(\frac{50}{111}< \frac{1}{2};\frac{50}{112}< \frac{1}{2};\frac{50}{113}< \frac{1}{2};\frac{50}{114}< \frac{1}{2}\)
\(\Rightarrow A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)(2)
từ (1) và (2) \(\Rightarrow1< A< 2\)