\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{4}{9},A>\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

5 tháng 2 2016

a)mk làm bên dưới r,bn kéo xuống mà xem

5 tháng 2 2016

Ta có : \(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

           \(\frac{1}{4^2}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

             ......

            \(\frac{1}{50^2}<\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}>\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}<\frac{12}{25}>\frac{1}{4}\)

Vậy \(A>\frac{1}{4}\)

Ý b làm tương tự 

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm

25 tháng 2 2018

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)

25 tháng 7 2018

Số 4/9 4/9 nhân hay cộng vậy