K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

Có \(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}<\frac{1}{101}+\frac{1}{101}+...+\frac{1}{101}=\frac{100}{101}<1\)

5 tháng 8 2015

Vì \(\frac{1}{101}>\frac{1}{102}>...>\frac{1}{200}\) Nên A<\(\frac{1}{101}+\frac{1}{101}+....+\frac{1}{101}\)(100 số hạng ) \(=100.\frac{1}{101}=\frac{100}{101}<1\)Suy ra đpcm

BẠN NHỚ ĐÚNG CHO MÌNH NHÉ

22 tháng 6 2017

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)

\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)

\(=\frac{1}{10}+\frac{90}{100}>1\)

\(A>1\left(đpcm\right)\)

9 tháng 10 2017

a>1(đpcm)

13 tháng 7 2019

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)

\(3A=1-\frac{1}{64}\)

\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)

10 tháng 5 2019

Đặt \(Q=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

Áp dụng tính chất \(\frac{a}{b}< \frac{a+m}{b+m}\left(a,b,m\inℕ^∗\right)\)ta có

\(\frac{1}{2}< \frac{1+1}{2+1}=\frac{2}{3}\)

\(\frac{2}{3}< \frac{2+1}{3+1}=\frac{3}{4}\)

...

\(\frac{399}{400}< \frac{399+1}{400+1}=\frac{400}{401}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

hay P < Q

=> \(P^2< P.Q\)

      \(P^2< \frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

       \(P^2< \frac{1.2.3.4.....400}{2.3.4.5.....401}\)

        \(P^2< \frac{1}{401}< \frac{1}{400}< \left(\frac{1}{20}\right)^2\)

Vì P và 1/20 có cùng dấu

\(\Rightarrow P< \frac{1}{20}\)

1 tháng 5 2016

Ta có: 1/22 < 1/1.2

          1/32 < 1/2.3 

          1 /4 2 < 1/3.4

    .. .........................

        1/502 < 1/49.50
=> A < 1/12 + 1/1.2 + 1/2.3 + 1/3.4+......+1/49.50

=> A < 1 + (1-1/50)

=> A < 1+49/50

=> A < 99/55 <2

=> A < 2 

1 tháng 5 2016

Ta có: 1/22 < 1/1.2

          1/32 < 1/2.3 

          1 /4 2 < 1/3.4

    .. .........................

        1/502 < 1/49.50
=> A < 1/12 + 1/1.2 + 1/2.3 + 1/3.4+......+1/49.50

=> A < 1 + (1-1/50)

=> A < 1+49/50

=> A < 99/55 <2

=> A < 2 

9 tháng 3 2019

Thấy 1/41+1/42 +......+ 1/60 < 1/40 .20

     1/41 +1/42 + .....+1/60<1/2

mà 1/61 +1/62+......+1/80 < 1/60 .20 =1/3

suy ra 1/41+1/42+ .......+1/80 <1/2 +1/3=7/12(đpcm)

Lại có 1/41 +1/42 +.....+1/80 <1/40 .40 =1(đpcm)

17 tháng 2 2017

ta lấy ví đụ 1/2

vì 1/2 đã nhỏ hơn 1 mà các số kia đều nhỏ hơn 1/2

k nhé

17 tháng 2 2017

đoạn cuối cùng là lớn hơn 1 chứ ko phải 11 nhe mình đánh nhầm . xin lỗi 

11 tháng 8 2017

Bài 1:

Ta thấy:

\(\frac{1}{2}>\frac{1}{6};\frac{1}{3}>\frac{1}{6};\frac{1}{4}>\frac{1}{6};\frac{1}{5}>\frac{1}{6};\frac{1}{6}=\frac{1}{6}\)

\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\)

\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{5}{6}\)

11 tháng 8 2017

Bài 2:

Đặt \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)

Ta thấy \(\frac{1}{5}=\frac{1}{1.5};\frac{1}{45}=\frac{1}{5.9};\frac{1}{117}=\frac{1}{9.13}\)

Theo quy luật như vậy ta có các số tiếp theo là:

\(\frac{1}{13.17}=\frac{1}{221};\frac{1}{17.21}=\frac{1}{357};\frac{1}{21.25}=\frac{1}{525};\frac{1}{25.29}=\frac{1}{725};...\)

Ta có \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)

\(=>A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{27.31}\)

\(=>4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{27.31}\)

\(=>4A=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{31-27}{27.31}\)

\(=>4A=\frac{5}{1.5}-\frac{1}{1.5}+\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+...+\frac{31}{27.31}-\frac{27}{27.31}\)

\(=>4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{27}-\frac{1}{31}\)

\(=>4A=1-\frac{1}{31}=\frac{30}{31}=>A=\frac{30}{31}.\frac{1}{4}=\frac{15}{62}\)